26 research outputs found

    Characterization of pre-analytical sample handling effects on a panel of Alzheimer's disease–related blood-based biomarkers: Results from the Standardization of Alzheimer's Blood Biomarkers (SABB) working group

    Get PDF
    Introduction: Pre-analytical sample handling might affect the results of Alzheimer's disease blood-based biomarkers. We empirically tested variations of common blood collection and handling procedures. Methods: We created sample sets that address the effect of blood collection tube type, and of ethylene diamine tetraacetic acid plasma delayed centrifugation, centrifugation temperature, aliquot volume, delayed storage, and freeze–thawing. We measured amyloid beta (Aβ)42 and 40 peptides with six assays, and Aβ oligomerization-tendency (OAβ), amyloid precursor protein (APP)699-711, glial fibrillary acidic protein (GFAP), neurofilament light (NfL), total tau (t-tau), and phosphorylated tau181. Results: Collection tube type resulted in different values of all assessed markers. Delayed plasma centrifugation and storage affected Aβ and t-tau; t-tau was additionally affected by centrifugation temperature. The other markers were resistant to handling variations. Discussion: We constructed a standardized operating procedure for plasma handling, to facilitate introduction of blood-based biomarkers into the research and clinical settings

    Acetate Causes Alcohol Hangover Headache in Rats

    Get PDF
    Background: The mechanism of veisalgia cephalgia or hangover headache is unknown. Despite a lack of mechanistic studies, there are a number of theories positing congeners, dehydration, or the ethanol metabolite acetaldehyde as causes of hangover headache. Methods: We used a chronic headache model to examine how pure ethanol produces increased sensitivity for nociceptive behaviors in normally hydrated rats. Results: Ethanol initially decreased sensitivity to mechanical stimuli on the face (analgesia), followed 4 to 6 hours later by inflammatory pain. Inhibiting alcohol dehydrogenase extended the analgesia whereas inhibiting aldehyde dehydrogenase decreased analgesia. Neither treatment had nociceptive effects. Direct administration of acetate increased nociceptive behaviors suggesting that acetate, not acetaldehyde, accumulation results in hangover-like hypersensitivity in our model. Since adenosine accumulation is a result of acetate formation, we administered an adenosine antagonist that blocked hypersensitivity. Discussion: Our study shows that acetate contributes to hangover headache. These findings provide insight into the mechanism of hangover headache and the mechanism of headache induction

    Transient Receptor Potential Channels Encode Volatile Chemicals Sensed by Rat Trigeminal Ganglion Neurons

    Get PDF
    Primary sensory afferents of the dorsal root and trigeminal ganglia constantly transmit sensory information depicting the individual’s physical and chemical environment to higher brain regions. Beyond the typical trigeminal stimuli (e.g. irritants), environmental stimuli comprise a plethora of volatile chemicals with olfactory components (odorants). In spite of a complete loss of their sense of smell, anosmic patients may retain the ability to roughly discriminate between different volatile compounds. While the detailed mechanisms remain elusive, sensory structures belonging to the trigeminal system seem to be responsible for this phenomenon. In order to gain a better understanding of the mechanisms underlying the activation of the trigeminal system by volatile chemicals, we investigated odorant-induced membrane potential changes in cultured rat trigeminal neurons induced by the odorants vanillin, heliotropyl acetone, helional, and geraniol. We observed the dose-dependent depolarization of trigeminal neurons upon application of these substances occurring in a stimulus-specific manner and could show that distinct neuronal populations respond to different odorants. Using specific antagonists, we found evidence that TRPA1, TRPM8, and/or TRPV1 contribute to the activation. In order to further test this hypothesis, we used recombinantly expressed rat and human variants of these channels to investigate whether they are indeed activated by the odorants tested. We additionally found that the odorants dose-dependently inhibit two-pore potassium channels TASK1 and TASK3 heterologously expressed In Xenopus laevis oocytes. We suggest that the capability of various odorants to activate different TRP channels and to inhibit potassium channels causes neuronal depolarization and activation of distinct subpopulations of trigeminal sensory neurons, forming the basis for a specific representation of volatile chemicals in the trigeminal ganglia
    corecore