80 research outputs found

    Preferential Myosin Heavy Chain Isoform B Expression May Contribute to the Faster Velocity of Contraction in Veins versus Arteries

    Get PDF
    Smooth muscle myosin heavy chains occur in 2 isoforms, SMA (slow) and SMB (fast). We hypothesized that the SMB isoform is predominant in the faster-contracting rat vena cava compared to thoracic aorta. We compared the time to half maximal contraction in response to a maximal concentration of endothelin-1 (ET-1; 100 nM), potassium chloride (KCl; 100 mM) and norepinephrine (NE; 10 µM). The time to half maximal contraction was shorter in the vena cava compared to aorta (aorta: ET-1 = 235.8 ± 13.8 s, KCl = 140.0 ± 33.3 s, NE = 19.8 ± 2.7 s; vena cava: ET-1 = 121.8 ± 15.6 s, KCl = 49.5 ± 6.7 s, NE = 9.0 ± 3.3 s). Reverse-transcription polymerase chain reaction supported the greater expression of SMB in the vena cava compared to aorta. SMB was expressed to a greater extent than SMA in the vessel wall of the vena cava. Western analysis determined that expression of SMB, relative to total smooth muscle myosin heavy chains, was 12.5 ± 4.9-fold higher in the vena cava compared to aorta, while SMA was 4.9 ± 1.2-fold higher in the aorta than vena cava. Thus, the SMB isoform is the predominant form expressed in rat veins, providing one possible mechanism for the faster response of veins to vasoconstrictors

    A Coupled Experimental and Computational Approach to Quantify Deleterious Hemodynamics, Vascular Alterations, and Mechanisms of Long-Term Morbidity in Response to Aortic Coarctati

    Get PDF
    Introduction Coarctation of the aorta (CoA) is associated with morbidity despite treatment. Although mechanisms remain elusive, abnormal hemodynamics and vascular biomechanics are implicated. We present a novel approach that facilitates quantification of coarctation-induced mechanical alterations and their impact on vascular structure and function, without genetic or confounding factors. Methods Rabbits underwent thoracic CoA at 10 weeks of age (~ 9 human years) to induce a 20 mm Hg blood pressure (BP) gradient using permanent or dissolvable suture thereby replicating untreated and corrected CoA. Computational fluid dynamics (CFD) was performed using imaging and BP data at 32 weeks to quantify velocity, strain and wall shear stress (WSS) for comparison to vascular structure and function as revealed by histology and myograph results. Results Systolic and mean BP was elevated in CoA compared to corrected and control rabbits leading to vascular thickening, disorganization and endothelial dysfunction proximally and distally. Corrected rabbits had less severe medial thickening, endothelial dysfunction, and stiffening limited to the proximal region despite 12 weeks of normal BP (~ 4 human years) after the suture dissolved. WSS was elevated distally for CoA rabbits, but reduced for corrected rabbits. Discussion These findings are consistent with alterations in humans. We are now poised to investigate mechanical contributions to mechanisms of morbidity in CoA using these methods

    Evaluation of neurotoxicity and long-term function and behavior following intrathecal 1 % 2-chloroprocaine in juvenile rats

    Get PDF
    Spinally-administered local anesthetics provide effective perioperative anesthesia and/or analgesia for children of all ages. New preparations and drugs require preclinical safety testing in developmental models. We evaluated age-dependent efficacy and safety following 1 % preservative-free 2-chloroprocaine (2-CP) in juvenile Sprague-Dawley rats. Percutaneous lumbar intrathecal 2-CP was administered at postnatal day (P)7, 14 or 21. Mechanical withdrawal threshold pre- and post-injection evaluated the degree and duration of sensory block, compared to intrathecal saline and naive controls. Tissue analyses one- or seven-days following injection included histopathology of spinal cord, cauda equina and brain sections, and quantification of neuronal apoptosis and glial reactivity in lumbar spinal cord. Following intrathecal 2-CP or saline at P7, outcomes assessed between P30 and P72 included: spinal reflex sensitivity (hindlimb thermal latency, mechanical threshold); social approach (novel rat versus object); locomotor activity and anxiety (open field with brightly-lit center); exploratory behavior (rearings, holepoking); sensorimotor gating (acoustic startle, prepulse inhibition); and learning (Morris Water Maze). Maximum tolerated doses of intrathecal 2-CP varied with age (1.0 μL/g at P7, 0.75 μL/g at P14, 0.5 μL/g at P21) and produced motor and sensory block for 10−15 min. Tissue analyses found no significant differences across intrathecal 2-CP, saline or naïve groups. Adult behavioral measures showed expected sex-dependent differences, that did not differ between 2-CP and saline groups. Single maximum tolerated in vivo doses of intrathecal 2-CP produced reversible spinal anesthesia in juvenile rodents without detectable evidence of developmental neurotoxicity. Current results cannot be extrapolated to repeated dosing or prolonged infusion

    Toll-like receptor signaling adapter proteins govern spread of neuropathic pain and recovery following nerve injury in male mice.

    Get PDF
    BackgroundSpinal Toll-like receptors (TLRs) and signaling intermediaries have been implicated in persistent pain states. We examined the roles of two major TLR signaling pathways and selected TLRs in a mononeuropathic allodynia.MethodsL5 spinal nerve ligation (SNL) was performed in wild type (WT, C57BL/6) male and female mice and in male Tlr2-/-Tlr3-/-, Tlr4-/-, Tlr5-/-, Myd88-/-, Triflps2, Myd88/Triflps2, Tnf-/-, and Ifnar1-/- mice. We also examined L5 ligation in Tlr4-/- female mice. We examined tactile allodynia using von Frey hairs. Iba-1 (microglia) and GFAP (astrocytes) were assessed in spinal cords by immunostaining. Tactile thresholds were analyzed by 1- and 2-way ANOVA and the Bonferroni post hoc test was used.ResultsIn WT male and female mice, SNL lesions resulted in a persistent and robust ipsilateral, tactile allodynia. In males with TLR2, 3, 4, or 5 deficiencies, tactile allodynia was significantly, but incompletely, reversed (approximately 50%) as compared to WT. This effect was not seen in female Tlr4-/- mice. Increases in ipsilateral lumbar Iba-1 and GFAP were seen in mutant and WT mice. Mice deficient in MyD88, or MyD88 and TRIF, showed an approximately 50% reduction in withdrawal thresholds and reduced ipsilateral Iba-1. In contrast, TRIF and interferon receptor null mice developed a profound ipsilateral and contralateral tactile allodynia. In lumbar sections of the spinal cords, we observed a greater increase in Iba-1 immunoreactivity in the TRIF-signaling deficient mice as compared to WT, but no significant increase in GFAP. Removing MyD88 abrogated the contralateral allodynia in the TRIF signaling-deficient mice. Conversely, IFNβ, released downstream to TRIF signaling, administered intrathecally, temporarily reversed the tactile allodynia.ConclusionsThese observations suggest a critical role for the MyD88 pathway in initiating neuropathic pain, but a distinct role for the TRIF pathway and interferon in regulating neuropathic pain phenotypes in male mice

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Potent Inhibition of Arterial Smooth Muscle Tonic Contractions by the Selective Myosin II Inhibitor, Blebbistatin

    No full text
    Blebbistatin is reported to be a selective and specific small molecule inhibitor of the myosin II isoforms expressed by striated muscles and nonmuscle (IC50 = 0.5–5 µM) but is a poor inhibitor of purified turkey smooth muscle myosin II (IC50 ~80 µM). We found that blebbistatin potently (IC50 ~3 µM) inhibited the actomyosin ATPase activities of expressed “slow” [smooth muscle myosin IIA (SMA)] and “fast” [smooth muscle myosin IIB (SMB)] smooth muscle myosin II heavy-chain isoforms. Blebbistatin also inhibited the KCl-induced tonic contractions produced by rabbit femoral and renal arteries that express primarily SMA and the weaker tonic contraction produced by the saphenous artery that expresses primarily SMB, with an equivalent potency comparable with that identified for nonmuscle myosin IIA (IC50 ~5 µM). In femoral and saphenous arteries, blebbistatin had no effect on unloaded shortening velocity or the tonic increase in myosin light-chain phosphorylation produced by KCl but potently inhibited β-escin permeabilized artery contracted with calcium at pCa 5, suggesting that cell signaling events upstream from KCl-induced activation of cross-bridges were unaffected by blebbistatin. It is noteworthy that KCl-induced contractions of chicken gizzard were less potently inhibited (IC50 ~20 µM). Adult femoral, renal, and saphenous arteries did not express significant levels of nonmuscle myosin. These data together indicate that blebbistatin is a potent inhibitor of smooth muscle myosin II, supporting the hypothesis that the force-bearing structure responsible for tonic force maintenance in adult mammalian vascular smooth muscle is the cross-bridge formed from the blebbistatin-dependent interaction between actin and smooth muscle myosin II

    Cognitive Trauma Therapy for Battered Women: Replication and Extension

    No full text
    To replicate and extend findings from a previous controlled trial of Cognitive Trauma Therapy for Battered Women (CTT-BW; Kubany et al., 2004), the current study presents data on the treatment of 8 women with PTSD related to intimate partner violence (IPV). Method: CTT-BW was administered weekly, using the manual provided by Kubany and a multiple baseline across participants design. Participants were assessed for PTSD and depression, as well as secondary outcomes. Results: Significant decreases from pre-to posttreatment were noted in PTSD (Hedges g = 1.90) and depression (Hedges g = 1.52), the primary outcomes. Obtained effect sizes for PTSD and depression can be classified as large. Anxiety, self-esteem, and quality of life improved significantly during the pre-to posttreatment interval. Conclusions: Results are discussed in light of treatment needs for women with PTSD related to IPV and the potential for CTT-BW to be used in diverse settings
    corecore