273 research outputs found

    The Quantum Dynamics of Heterotic Vortex Strings

    Full text link
    We study the quantum dynamics of vortex strings in N=1 SQCD with U(N_c) gauge group and N_f=N_c quarks. The classical worldsheet of the string has N=(0,2) supersymmetry, but this is broken by quantum effects. We show how the pattern of supersymmetry breaking and restoration on the worldsheet captures the quantum dynamics of the underlying 4d theory. We also find qualitative matching of the meson spectrum in 4d and the spectrum on the worldsheet.Comment: 13 page

    Sp(N) higher-derivative F-terms via singular superpotentials

    Full text link
    We generalize the higher-derivative F-terms introduced by Beasley and Witten (hep-th/0409149) for SU(2) superQCD to Sp(N) gauge theories with fundamental matter. We generate these terms by integrating out massive modes at tree level from an effective superpotential on the chiral ring of the microscopic theory. Though this superpotential is singular, its singularities are mild enough to permit the unambiguous identification of its minima, and gives sensible answers upon integrating out massive modes near any given minimum.Comment: 15 pages, 6 figure

    Heterotic Vortex Strings

    Get PDF
    We determine the low-energy N=(0,2) worldsheet dynamics of vortex strings in a large class of non-Abelian N=1 supersymmetric gauge theories.Comment: 44 pages, 3 figures. v2: typos corrected, reference adde

    Holographic non-relativistic fermionic fixed point by the charged dilatonic black hole

    Full text link
    Driven by the landscape of garden-variety condensed matter systems, we have investigated how the dual spectral function behaves at the non-relativistic as well as relativistic fermionic fixed point by considering the probe Dirac fermion in an extremal charged dilatonic black hole with zero entropy. Although the pattern for both of the appearance of flat band and emergence of Fermi surface is qualitatively similar to that given by the probe fermion in the extremal Reissner-Nordstrom AdS black hole, we find a distinctly different low energy behavior around the Fermi surface, which can be traced back to the different near horizon geometry. In particular, with the peculiar near horizon geometry of our extremal charged dilatonic black hole, the low energy behavior exhibits the universal linear dispersion relation and scaling property, where the former indicates that the dual liquid is a Fermi one while the latter implies that the dual liquid is not exactly of Landau Fermi type

    Real Hydrostatic Pressure in High-Pressure Torsion Measured by Bismuth Phase Transformations and FEM Simulations

    Get PDF
    Hydrostatic pressure is a significant parameter influencing the evolution of microstructure and phase transformations in the high-pressure torsion (HPT) process. Currently, there are significant arguments relating to the magnitude of the real hydrostatic pressure during the process. In this study, phase transformations in bismuth, copper and titanium combined with the finite element method (FEM) were employed to determine the real pressure in processing disc samples by HPT. Any break in the variation of steady-state hardness (monitored experimentally by in-situ torque and temperature rise measurements) versus pressure was considered as a phase transition. FEM simulations show that the hydrostatic pressure is reasonably isotropic but decreases with increasing distance from the disc center and remains unchanged across the disc thickness. Both experiments and simulations indicate that the mean hydrostatic pressure during HPT processing closely corresponds to the compressive load over the disc area plus the contact area between the anvils.1166Ysciescopu

    Bosonic excitations of the AdS4 Reissner-Nordstrom black hole

    Full text link
    We study the long-lived modes of the charge density and energy density correlators in the strongly-coupled, finite density field theory dual to the AdS4 Reissner-Nordstrom black hole. For small momenta q<<\mu, these correlators contain a pole due to sound propagation, as well as a pole due to a long-lived, purely imaginary mode analogous to the \mu=0 hydrodynamic charge diffusion mode. As the temperature is raised in the range T\lesssim\mu, the sound attenuation shows no significant temperature dependence. When T\gtrsim\mu, it quickly approaches the \mu=0 hydrodynamic result where it decreases like 1/T. It does not share any of the temperature-dependent properties of the 'zero sound' of Landau Fermi liquids observed in the strongly-coupled D3/D7 field theory. For such small momenta, the energy density spectral function is dominated by the sound mode at all temperatures, whereas the charge density spectral function undergoes a crossover from being dominated by the sound mode at low temperatures to being dominated by the diffusion mode when T \mu^2/q. This crossover occurs due to the changing residue at each pole. We also compute the momentum dependence of these spectral functions and their corresponding long-lived poles at fixed, low temperatures T<<\mu.Comment: 33 pages, 21 figures, 6 animation

    Universal scaling properties of extremal cohesive holographic phases

    Get PDF
    We show that strongly-coupled, translation-invariant holographic IR phases at finite density can be classified according to the scaling behaviour of the metric, the electric potential and the electric flux introducing four critical exponents, independently of the details of the setup. Solutions fall into two classes, depending on whether they break relativistic symmetry or not. The critical exponents determine key properties of these phases, like thermodynamic stability, the (ir)relevant deformations around them, the low-frequency scaling of the optical conductivity and the nature of the spectrum for electric perturbations. We also study the scaling behaviour of the electric flux through bulk minimal surfaces using the Hartnoll-Radicevic order parameter, and characterize the deviation from the Ryu-Takayanagi prescription in terms of the critical exponents.Comment: v4: corrected a typo in eqn (3.29), now (3.28). Conclusions unchange

    Virulence factors and antimicrobial resistance in uropathogenic escherichia coli strains isolated from cystitis and pyelonephritis

    Get PDF
    Background/aim: The aim of this study was to investigate the prevalence of virulence genes as well as patterns of antibiotic resistance in cystitis and pyelonephritis uropathogenic Escherichia coli (UPEC) isolates. Materials and methods: Two hundred UPEC isolates were collected from hospitalized patients with pyelonephritis (n = 50) and cystitis (n = 150) in Shafa Hospital in Iran. Antimicrobial susceptibility and ESBL production were determined with confirmatory tests. Polymerase chain reaction assay was performed to determine the prevalence of virulence genes in UPEC strains. Results: Of a total 200 UPEC isolates, the highest and lowest resistance rates to antibiotics were for cephalexin (74) and nitrofurantoin (9), respectively. Of these isolates, 72 (36) and 128 (64) strains were ESBL-positive and ESBL-negative, respectively. The frequency of fimH, papC, and hly was 64, 38, and 12, respectively. The most commonly identified virulence gene in ESBL-positive and ESBL-negative strains was fimH 46 (23) and 86 (43), respectively. The hlyA gene was more prevalent among patients with pyelonephritis than cystitis. Conclusion: The frequency of virulence genes was not significantly different between pyelonephritis and cystitis UPEC strains in the studied patients, but the prevalence rates of hlyA and papC genes were higher among UPEC strains isolated from inpatients compared to outpatients; hence, they could be considered as useful targets for prophylactic interventions. © TUBİTAK

    Large-density field theory, viscosity, and "2kF2k_F" singularities from string duals

    Get PDF
    We analyze systems where an effective large-N expansion arises naturally in gauge theories without a large number of colors: a sufficiently large charge density alone can produce a perturbative string ('tHooft) expansion. One example is simply the well-known NS5/F1 system dual to AdS3×T4×S3AdS_3\times T^4\times S^3, here viewed as a 5+1 dimensional theory at finite density. This model is completely stable, and we find that the existing string-theoretic solution of this model yields two interesting results. First, it indicates that the shear viscosity is not corrected by α\alpha' effects in this system. For flow perpendicular to the F1 strings the viscosity to entropy ratio take the usual value 1/4π1/4\pi, but for flow parallel to the F1's it vanishes as T2T^2 at low temperature. Secondly, it encodes singularities in correlation functions coming from low-frequency modes at a finite value of the momentum along the T4T^4 directions. This may provide a strong coupling analogue of finite density condensed matter systems for which fermionic constituents of larger operators contribute so-called "2kF2k_F" singularities. In the NS5/F1 example, stretched strings on the gravity side play the role of these composite operators. We explore the analogue for our system of the Luttinger relation between charge density and the volume bounded by these singular surfaces. This model provides a clean example where the string-theoretic UV completion of the gravity dual to a finite density field theory plays a significant and calculable role.Comment: 28 pages. v2: added reference
    corecore