273 research outputs found
The Quantum Dynamics of Heterotic Vortex Strings
We study the quantum dynamics of vortex strings in N=1 SQCD with U(N_c) gauge
group and N_f=N_c quarks. The classical worldsheet of the string has N=(0,2)
supersymmetry, but this is broken by quantum effects. We show how the pattern
of supersymmetry breaking and restoration on the worldsheet captures the
quantum dynamics of the underlying 4d theory. We also find qualitative matching
of the meson spectrum in 4d and the spectrum on the worldsheet.Comment: 13 page
Sp(N) higher-derivative F-terms via singular superpotentials
We generalize the higher-derivative F-terms introduced by Beasley and Witten
(hep-th/0409149) for SU(2) superQCD to Sp(N) gauge theories with fundamental
matter. We generate these terms by integrating out massive modes at tree level
from an effective superpotential on the chiral ring of the microscopic theory.
Though this superpotential is singular, its singularities are mild enough to
permit the unambiguous identification of its minima, and gives sensible answers
upon integrating out massive modes near any given minimum.Comment: 15 pages, 6 figure
Heterotic Vortex Strings
We determine the low-energy N=(0,2) worldsheet dynamics of vortex strings in
a large class of non-Abelian N=1 supersymmetric gauge theories.Comment: 44 pages, 3 figures. v2: typos corrected, reference adde
Holographic non-relativistic fermionic fixed point by the charged dilatonic black hole
Driven by the landscape of garden-variety condensed matter systems, we have
investigated how the dual spectral function behaves at the non-relativistic as
well as relativistic fermionic fixed point by considering the probe Dirac
fermion in an extremal charged dilatonic black hole with zero entropy. Although
the pattern for both of the appearance of flat band and emergence of Fermi
surface is qualitatively similar to that given by the probe fermion in the
extremal Reissner-Nordstrom AdS black hole, we find a distinctly different low
energy behavior around the Fermi surface, which can be traced back to the
different near horizon geometry. In particular, with the peculiar near horizon
geometry of our extremal charged dilatonic black hole, the low energy behavior
exhibits the universal linear dispersion relation and scaling property, where
the former indicates that the dual liquid is a Fermi one while the latter
implies that the dual liquid is not exactly of Landau Fermi type
Real Hydrostatic Pressure in High-Pressure Torsion Measured by Bismuth Phase Transformations and FEM Simulations
Hydrostatic pressure is a significant parameter influencing the evolution of microstructure and phase transformations in the high-pressure torsion (HPT) process. Currently, there are significant arguments relating to the magnitude of the real hydrostatic pressure during the process. In this study, phase transformations in bismuth, copper and titanium combined with the finite element method (FEM) were employed to determine the real pressure in processing disc samples by HPT. Any break in the variation of steady-state hardness (monitored experimentally by in-situ torque and temperature rise measurements) versus pressure was considered as a phase transition. FEM simulations show that the hydrostatic pressure is reasonably isotropic but decreases with increasing distance from the disc center and remains unchanged across the disc thickness. Both experiments and simulations indicate that the mean hydrostatic pressure during HPT processing closely corresponds to the compressive load over the disc area plus the contact area between the anvils.1166Ysciescopu
Bosonic excitations of the AdS4 Reissner-Nordstrom black hole
We study the long-lived modes of the charge density and energy density
correlators in the strongly-coupled, finite density field theory dual to the
AdS4 Reissner-Nordstrom black hole. For small momenta q<<\mu, these correlators
contain a pole due to sound propagation, as well as a pole due to a long-lived,
purely imaginary mode analogous to the \mu=0 hydrodynamic charge diffusion
mode. As the temperature is raised in the range T\lesssim\mu, the sound
attenuation shows no significant temperature dependence. When T\gtrsim\mu, it
quickly approaches the \mu=0 hydrodynamic result where it decreases like 1/T.
It does not share any of the temperature-dependent properties of the 'zero
sound' of Landau Fermi liquids observed in the strongly-coupled D3/D7 field
theory. For such small momenta, the energy density spectral function is
dominated by the sound mode at all temperatures, whereas the charge density
spectral function undergoes a crossover from being dominated by the sound mode
at low temperatures to being dominated by the diffusion mode when T \mu^2/q.
This crossover occurs due to the changing residue at each pole. We also compute
the momentum dependence of these spectral functions and their corresponding
long-lived poles at fixed, low temperatures T<<\mu.Comment: 33 pages, 21 figures, 6 animation
Universal scaling properties of extremal cohesive holographic phases
We show that strongly-coupled, translation-invariant holographic IR phases at
finite density can be classified according to the scaling behaviour of the
metric, the electric potential and the electric flux introducing four critical
exponents, independently of the details of the setup. Solutions fall into two
classes, depending on whether they break relativistic symmetry or not. The
critical exponents determine key properties of these phases, like thermodynamic
stability, the (ir)relevant deformations around them, the low-frequency scaling
of the optical conductivity and the nature of the spectrum for electric
perturbations. We also study the scaling behaviour of the electric flux through
bulk minimal surfaces using the Hartnoll-Radicevic order parameter, and
characterize the deviation from the Ryu-Takayanagi prescription in terms of the
critical exponents.Comment: v4: corrected a typo in eqn (3.29), now (3.28). Conclusions unchange
Virulence factors and antimicrobial resistance in uropathogenic escherichia coli strains isolated from cystitis and pyelonephritis
Background/aim: The aim of this study was to investigate the prevalence of virulence genes as well as patterns of antibiotic resistance in cystitis and pyelonephritis uropathogenic Escherichia coli (UPEC) isolates. Materials and methods: Two hundred UPEC isolates were collected from hospitalized patients with pyelonephritis (n = 50) and cystitis (n = 150) in Shafa Hospital in Iran. Antimicrobial susceptibility and ESBL production were determined with confirmatory tests. Polymerase chain reaction assay was performed to determine the prevalence of virulence genes in UPEC strains. Results: Of a total 200 UPEC isolates, the highest and lowest resistance rates to antibiotics were for cephalexin (74) and nitrofurantoin (9), respectively. Of these isolates, 72 (36) and 128 (64) strains were ESBL-positive and ESBL-negative, respectively. The frequency of fimH, papC, and hly was 64, 38, and 12, respectively. The most commonly identified virulence gene in ESBL-positive and ESBL-negative strains was fimH 46 (23) and 86 (43), respectively. The hlyA gene was more prevalent among patients with pyelonephritis than cystitis. Conclusion: The frequency of virulence genes was not significantly different between pyelonephritis and cystitis UPEC strains in the studied patients, but the prevalence rates of hlyA and papC genes were higher among UPEC strains isolated from inpatients compared to outpatients; hence, they could be considered as useful targets for prophylactic interventions. © TUBİTAK
Large-density field theory, viscosity, and "" singularities from string duals
We analyze systems where an effective large-N expansion arises naturally in
gauge theories without a large number of colors: a sufficiently large charge
density alone can produce a perturbative string ('tHooft) expansion. One
example is simply the well-known NS5/F1 system dual to , here viewed as a 5+1 dimensional theory at finite density. This model is
completely stable, and we find that the existing string-theoretic solution of
this model yields two interesting results. First, it indicates that the shear
viscosity is not corrected by effects in this system. For flow
perpendicular to the F1 strings the viscosity to entropy ratio take the usual
value , but for flow parallel to the F1's it vanishes as at low
temperature. Secondly, it encodes singularities in correlation functions coming
from low-frequency modes at a finite value of the momentum along the
directions. This may provide a strong coupling analogue of finite density
condensed matter systems for which fermionic constituents of larger operators
contribute so-called "" singularities. In the NS5/F1 example, stretched
strings on the gravity side play the role of these composite operators. We
explore the analogue for our system of the Luttinger relation between charge
density and the volume bounded by these singular surfaces. This model provides
a clean example where the string-theoretic UV completion of the gravity dual to
a finite density field theory plays a significant and calculable role.Comment: 28 pages. v2: added reference
- …