19 research outputs found

    The clinical and functional significance of c-Met in breast cancer: a review

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.CMH-Y is funded by a Cancer Research UK Clinical Research Fellowship. JLJ is funded by the Breast Cancer Campaign Tissue Bank

    The Met oncogene and basal-like breast cancer: another culprit to watch out for?

    Get PDF
    Recent findings suggest the involvement of the MET oncogene, encoding the tyrosine kinase receptor for hepatocyte growth factor, in the onset and progression of basal-like breast carcinoma. The expression profiles of basal-like tumors - but not those of other breast cancer subtypes - are enriched for gene sets that are coordinately over-represented in transcriptional signatures regulated by Met. Consistently, tissue microarray analyses have revealed that Met immunoreactivity is much higher in basal-like cases of human breast cancer than in other tumor types. Finally, mouse models expressing mutationally activated forms of Met develop a high incidence of mammary tumors, some of which exhibit basal characteristics. The present review summarizes current knowledge on the role and activity of Met in basal-like breast cancer, with a special emphasis on the correlation between this tumor subtype and the cellular hierarchy of the normal mammary gland

    Elevated phosphorylation and activation of PDK-1/AKT pathway in human breast cancer

    Get PDF
    Activation of kinases signalling pathways contributes to various malignant phenotypes in human cancers, including breast tumour. To examine the possible activation of these signalling molecules, we examined the phosphorylation status in 12 protein kinases and transcription factors in normal primary human mammary epithelial cells, telomerase-immortalised human breast epithelial cell line, and two breast cancer lines, MDA-MB-468 and MCF-7, using Kinexus phosphorylated protein screening assays. The phosphorylation of FAK, mTOR, p70S6K, and PDK-1 were elevated in both breast cancer cell lines, whereas the phosphorylation of AKT, EGFR, ErbB2/Her2, PDGFR, Shc, and Stat3 were elevated in only one breast cancer line compared to normal primary mammary epithelial cells and telomerase-immortalised breast epithelial cells. The same findings were confirmed by Western blotting and by kinase assays. We further substantiated the phosphorylation status of these molecules in tissue microarray slides containing 89 invasive breast cancer tissues as well as six normal mammary tissues with immunohistochemistry staining using phospho-specific antibodies. Consistent findings were obtained as greater than 70% of invasive breast carcinomas expressed moderate to high levels of phosphorylated PDK-1, AKT, p70S6K, and EGFR. In sharp contrast, phosphorylation of the same proteins was nearly undetectable or was at low levels in normal mammary tissues under the same assay. Elevated phosphorylation of PDK-1, AKT, mTOR, p70S6K, S6, EGFR, and Stat3 were highly associated with invasive breast tumours (P<0.05). Taken together, our results suggest that activation of these kinase pathways by phosphorylation may in part account for molecular pathogenesis of human breast carcinoma. Particularly, moderate to high level of PDK-1 phosphorylation was found in 86% of high-grade metastasised breast tumours. This is the first report demonstrating phosphorylation of PDK-1 is frequently elevated in breast cancer with concomitantly increased phosphorylation of downstream kinases, including AKT, mTOR, p70S6K, S6, and Stat3. This finding thus suggested PDK-1 may promote oncogenesis in part through the activation of AKT and p70S6K and rationalised that PDK-1 as well as downstream components of PDK-1 signalling pathway may be promising therapeutic targets to treat breast cancer
    corecore