16 research outputs found

    The ARID1B spectrum in 143 patients: from nonsyndromic intellectual disability to Coffin–Siris syndrome

    Get PDF
    Purpose: Pathogenic variants in ARID1B are one of the most frequent causes of intellectual disability (ID) as determined by large-scale exome sequencing studies. Most studies published thus far describe clinically diagnosed Coffin–Siris patients (ARID1B-CSS) and it is unclear whether these data are representative for patients identified through sequencing of unbiased ID cohorts (ARID1B-ID). We therefore sought to determine genotypic and phenotypic differences between ARID1B-ID and ARID1B-CSS. In parallel, we investigated the effect of different methods of phenotype reporting. Methods: Clinicians entered clinical data in an extensive web-based survey. Results: 79 ARID1B-CSS and 64 ARID1B-ID patients were included. CSS-associated dysmorphic features, such as thick eyebrows, long eyelashes, thick alae nasi, long and/or broad philtrum, small nails and small or absent fifth distal phalanx and hypertrichosis, were observed significantly more often (p < 0.001) in ARID1B-CSS patients. No other significant differences were identified. Conclusion: There are only minor differences between ARID1B-ID and ARID1B-CSS patients. ARID1B-related disorders seem to consist of a spectrum, and patients should be managed similarly. We demonstrated that data collection methods without an explicit option to report the absence of a feature (such as most Human Phenotype Ontology-based methods) tended to underestimate gene-related features

    EFFECTS OF HIGH-INTENSITY ENDURANCE EXERCISE ON EPIDERMAL BARRIERS AGAINST MICROBIAL INVASION

    No full text
    For athletes, preventing infectious disease on skin is important. Examination measurement of epidermal barriers could provide valuable information on the risk of skin infections. The aim of this study was to determine the effects of high-intensity endurance exercise on epidermal barriers. Six healthy adult males (age; 22.3 ± 1.6 years) performed bicycle exercise at 75%HRmax for 60 min from 18:30 to 19:30. Skin surface samples were measured 18:30 (pre), 19:30 (post), 20:30 (60 min), and 21:30 (120 min). Secretory immunoglobulin A (SIgA) and human β-defensin 2 (HBD-2) concentrations were measured using an enzyme-linked immunosorbent assay (ELISA). SIgA concentration at pre was significantly higher than at post, 60 min and 120 min (p < 0.05). HBD-2 concentration at post and 120 min was significantly higher than at pre (p < 0. 05). Moisture content of the stratum corneum was significantly higher at post than at pre, 60 min, and 120 min (p < 0.05). On the chest, moisture content of the stratum corneum was significantly lower at 120 min than at pre (p < 0.05). The number of staphylococci was significantly higher at post than at pre (p < 0.05), and tended to be higher at 60 min than at pre on the chest (p = 0. 08). High-intensity endurance exercise might depress the immune barrier and physical barrier and enhance the risk of skin infection. On the other hand, the biochemical barrier increases after exercise, and our findings suggest that this barrier might supplement the compromised function of other skin barriers

    Effects of Intestinal Bacterial Hydrogen Gas Production on Muscle Recovery following Intense Exercise in Adult Men: A Pilot Study

    No full text
    This study aimed to examine the effects of hydrogen gas (H2) produced by intestinal microbiota on participant conditioning to prevent intense exercise-induced damage. In this double-blind, randomized, crossover study, participants ingested H2-producing milk that induced intestinal bacterial H2 production or a placebo on the trial day, 4 h before performing an intense exercise at 75% maximal oxygen uptake for 60 min. Blood marker levels and respiratory variables were measured before, during, and after exercise. Visual analog scale scores of general and lower limb muscle soreness evaluated were 3.8- and 2.3-fold higher, respectively, on the morning after treatment than that before treatment during the placebo trial, but not during the test beverage consumption. Urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) concentrations and production rates significantly increased with placebo consumption; no changes were observed with test beverage consumption. After exercise, relative blood lactate levels with H2-producing milk consumption were lower than those with placebo consumption. A negative correlation was observed between the variation of 8-OHdG and the area under the curve (AUC) of breath H2 concentrations. Lipid oxidation AUC was 1.3-fold higher significantly with H2-producing milk than with placebo consumption. Conclusively, activating intestinal bacterial H2 production by consuming a specific beverage may be a new strategy for promoting recovery and conditioning in athletes frequently performing intense exercises

    Influence of acute high-intensity exercise on salivary nitric oxide levels

    Get PDF
    This study, employing an exercise versus control crossover design, was conducted to investigate the influence of acute high-intensity exercise on salivary nitric oxide (NO) levels. Nine healthy males (aged 23.8 ± 1.4 years) performed ergometer exercise at 80%VO2peak for 60 min, whereas controls sat at rest for 60 min. Saliva samples were collected before (Pre: 0800 h) and after (Post 0-h: 0900 h, Post 1-h: 1000 h, Post 2-h: 1100 h, Post 3-h: 1200 h) the interventions. Salivary NO levels were determined by colorimetric assay. It was found that the salivary NO levels in controls were decreased (P < 0.05) at Post 0-h (−94 ± 15), Post 1-h (−80 ± 20), Post 2-h (−92 ± 34) and Post 3-h (−145 ± 39) relative to the Pre values. Under exercise conditions, salivary NO levels did not change after high-intensity ergometer exercise relative to the Pre values. Thus, the response of salivary NO levels appeared to differ between high-intensity ergometer exercise and inactivity, that exercise-related stress induces the production of salivary NO

    Maintenance of Serum Immunoglobulin G Antibodies to Epstein-Barr Virus (EBV) Nuclear Antigen 2 in Healthy Individuals from Different Age Groups in a Japanese Population with a High Childhood Incidence of Asymptomatic Primary EBV Infection

    No full text
    Immunoglobulin G (IgG) antibodies to Epstein-Barr virus (EBV) nuclear antigens 2 and 1 (EBNA-2 and EBNA-1, respectively) were studied using sera from healthy individuals of a population with a high incidence of asymptomatic primary EBV infections during infancy or childhood in Japan. Two CHO-K1 cell lines expressing EBNA-2 and EBNA-1 were used for anticomplement and indirect immunofluorescence assays. The positivity rate for EBNA-2 IgG rose in the 1- to 2-year age group, increased and remained at a plateau (∼45%) between 3 and 29 years of age (3- to 4-, 5- to 9-, 10- to 14-, and 15- to 29-year age groups), and then reached 98% by age 40 (≥40-year age group). Both seropositivity for EBNA-1 and seropositivity for EBNAs in Raji cells (EBNA/Raji) were detected in the 1- to 2-year age group, remained high, and finally reached 100% by age 40. The geometric mean titer (GMT) of EBNA-2 IgG reached a plateau in the 5- to 9- and 10- to 14-year-old groups and remained elevated in the older age groups (15 to 29 and ≥40 years). The GMT of EBNA-1 IgGs increased to a plateau in the 1- to 2-year-old group and remained unchanged in the older age groups. The GMT of EBNA/Raji IgGs also reached a plateau in the 1- to 2-year-old group, remained level throughout the 3- to 14-year age groups, and decreased in the 15- to 29-year-olds. EBNA-2 IgGs emerged earlier than EBNA-1 IgGs in 8 of 10 patients with infectious mononucleosis, who were between 1 and 27 years old, and declined with time in three of eight cases. These results suggest that EBNA-2 IgG antibodies evoked in young children by asymptomatic primary EBV infections remain elevated throughout life, probably because of reactivation of latent and/or exogenous EBV superinfection
    corecore