25 research outputs found

    Air Pollution Exposure Assessment for Epidemiologic Studies of Pregnant Women and Children: Lessons Learned from the Centers for Children’s Environmental Health and Disease Prevention Research

    Get PDF
    The National Children’s Study is considering a wide spectrum of airborne pollutants that are hypothesized to potentially influence pregnancy outcomes, neurodevelopment, asthma, atopy, immune development, obesity, and pubertal development. In this article we summarize six applicable exposure assessment lessons learned from the Centers for Children’s Environmental Health and Disease Prevention Research that may enhance the National Children’s Study: a) Selecting individual study subjects with a wide range of pollution exposure profiles maximizes spatial-scale exposure contrasts for key pollutants of study interest. b) In studies with large sample sizes, long duration, and diverse outcomes and exposures, exposure assessment efforts should rely on modeling to provide estimates for the entire cohort, supported by subject-derived questionnaire data. c) Assessment of some exposures of interest requires individual measurements of exposures using snapshots of personal and microenvironmental exposures over short periods and/or in selected microenvironments. d) Understanding issues of spatial–temporal correlations of air pollutants, the surrogacy of specific pollutants for components of the complex mixture, and the exposure misclassification inherent in exposure estimates is critical in analysis and interpretation. e) “Usual” temporal, spatial, and physical patterns of activity can be used as modifiers of the exposure/outcome relationships. f) Biomarkers of exposure are useful for evaluation of specific exposures that have multiple routes of exposure. If these lessons are applied, the National Children’s Study offers a unique opportunity to assess the adverse effects of air pollution on interrelated health outcomes during the critical early life period

    Traffic, Susceptibility, and Childhood Asthma

    Get PDF
    Results from studies of traffic and childhood asthma have been inconsistent, but there has been little systematic evaluation of susceptible subgroups. In this study, we examined the relationship of local traffic-related exposure and asthma and wheeze in southern California school children (5–7 years of age). Lifetime history of doctor-diagnosed asthma and prevalent asthma and wheeze were evaluated by questionnaire. Parental history of asthma and child’s history of allergic symptoms, sex, and early-life exposure (residence at the same home since 2 years of age) were examined as susceptibility factors. Residential exposure was assessed by proximity to a major road and by modeling exposure to local traffic-related pollutants. Residence within 75 m of a major road was associated with an increased risk of lifetime asthma [odds ratio (OR) = 1.29; 95% confidence interval (CI), 1.01–1.86], prevalent asthma (OR = 1.50; 95% CI, 1.16–1.95), and wheeze (OR = 1.40; 95% CI, 1.09–1.78). Susceptibility increased in long-term residents with no parental history of asthma for lifetime asthma (OR = 1.85; 95% CI, 1.11–3.09), prevalent asthma (OR = 2.46; 95% CI, 0.48–4.09), and recent wheeze (OR = 2.74; 95% CI, 1.71–4.39). The higher risk of asthma near a major road decreased to background rates at 150–200 m from the road. In children with a parental history of asthma and in children moving to the residence after 2 years of age, there was no increased risk associated with exposure. Effect of residential proximity to roadways was also larger in girls. A similar pattern of effects was observed with traffic-modeled exposure. These results indicate that residence near a major road is associated with asthma. The reason for larger effects in those with no parental history of asthma merits further investigation

    Modeling the Residential Infiltration of Outdoor PM2.5 in the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air)

    Get PDF
    Background: Epidemiologic studies of fine particulate matter [aerodynamic diameter ≤ 2.5 μm (PM2.5)] typically use outdoor concentrations as exposure surrogates. Failure to account for variation in residential infiltration efficiencies (Finf) will affect epidemiologic study results

    Childhood Incident Asthma and Traffic-Related Air Pollution at Home and School

    Get PDF
    Background: Traffic-related air pollution has been associated with adverse cardiorespiratory effects, including increased asthma prevalence. However, there has been little study of effects of traffic exposure at school on new-onset asthma. Objectives: We evaluated the relationship of new-onset asthma with traffic-related pollution near homes and schools. Methods: Parent-reported physician diagnosis of new-onset asthma (n = 120) was identified during 3 years of follow-up of a cohort of 2,497 kindergarten and first-grade children who were asthma- and wheezing-free at study entry into the Southern California Children's Health Study. We assessed traffic-related pollution exposure based on a line source dispersion model of traffic volume, distance from home and school, and local meteorology. Regional ambient ozone, nitrogen dioxide (NO2), and particulate matter were measured continuously at one central site monitor in each of 13 study communities. Hazard ratios (HRs) for new-onset asthma were scaled to the range of ambient central site pollutants and to the residential interquartile range for each traffic exposure metric. Results: Asthma risk increased with modeled traffic-related pollution exposure from roadways near homes [HR 1.51; 95% confidence interval (CI), 1.25-1.82] and near schools (HR 1.45; 95% CI, 1.06-1.98). Ambient NO2 measured at a central site in each community was also associated with increased risk (HR 2.18; 95% CI, 1.18-4.01). In models with both NO2 and modeled traffic exposures, there were independent associations of asthma with traffic-related pollution at school and home, whereas the estimate for NO2 was attenuated (HR 1.37; 95% CI, 0.69-2.71). Conclusions: Traffic-related pollution exposure at school and homes may both contribute to the development of asthma. Editor's SummaryTraffic-related air pollution has been associated with adverse cardiorespiratory effects, including increased asthma prevalence. McConnell et al. (p. 1021) evaluated the relationship of new-onset asthma with traffic-related pollution near homes and schools. Parent-reported physician diagnosis of new-onset asthma was identified during 3 years of follow-up of a cohort of kindergarten and first-grade children who were asthma- and wheezing-free at study entry into the Southern California Children's Health Study. Traffic-related pollution exposure was assessed based on a line source dispersion model of traffic volume, distance from home and school, and local meteorology. Regional ambient ozone, nitrogen dioxide (NO2), and particulate matter were measured continuously at one central site monitor in each of 13 study communities. The authors report an increase in asthma risk with modeled traffic-related pollution exposure from roadways near homes and schools. Ambient NO2 was also associated with increased risk. Models that included both NO2 and modeled traffic exposures suggested independent associations of asthma with traffic-related pollution at school and at home, whereas the estimate for NO2 was attenuated. The authors conclude that traffic-related pollution exposure at school and home may both contribute to the development of asthma

    Associations of Tumor Necrosis Factor G-308A with Childhood Asthma and Wheezing

    No full text
    Rationale: Tumor necrosis factor (TNF) mediates a spectrum of airway inflammatory responses, including those to air pollutants, and is an asthma candidate gene. One TNF promoter variant (G–308A) affects expression of TNF and has been associated with inflammatory diseases; however, studies of asthma have been inconsistent. Because ozone produces oxidative stress, increased airway TNF, and inflammation, the associations of the −308 TNF polymorphism with asthma may vary by ozone exposure and variants of oxidant defense genes glutathione-S-transferase (GST) M1 and GSTP1

    Ozone, Oxidant Defense Genes, and Risk of Asthma during Adolescence

    No full text
    Rationale: Although oxidative stress is a cardinal feature of asthma, the roles of oxidant air pollutants and antioxidant genes heme oxygenase 1 (HMOX-1), catalase (CAT), and manganese superoxide dismutase (MNSOD) in asthma pathogenesis have yet to be determined

    Health Effects of the 2003 Southern California Wildfires on Children

    No full text
    Rationale: In late October 2003, Southern California wildfires burned more than 3,000 km2. The wildfires produced heavy smoke that affected several communities participating in the University of Southern California Children's Health Study (CHS)
    corecore