1,186 research outputs found
Herd behaviour in extreme market conditions: The case of the Athens stock exchange
This paper examines herd behaviour in extreme market conditions using data from the Athens Stock Exchange. We test for the presence of herding as suggested by Christie and Huang (1995) and Chang, Cheng, and Khorana (2000). Results based on daily, weekly and monthly data indicate the existence of herd behaviour for the years 1998-2007. Evidence of herd behaviour over daily time intervals is much stronger, revealing the short-term nature of the phenomenon. When the testing period is broken into semi-annual sub-periods, herding is found during the stock market crisis of 1999. Investor behaviour seems to have become more rational since 2002, owing to the regulatory and institutional reforms of the Greek equity market and the intense presence of foreign institutional investors
Is There a Disc in the Superluminal Quasars?
We present a new evidence of the accretion disc in active galactic nuclei, by
examining the properties of the Ha emission line versus viewing angle, in a
sample of superluminal (SL) quasars. Both line velocity width (FWHM) and rest
equivalent width (EW) correlate with viewing angle. These correlations are
quantitatively consistent with a disc geometry for both the line and the
underlying continuum source.Comment: 18 pages with 6 figures, accepted for publication in MNRA
Prestige drives epistemic inequality in the diffusion of scientific ideas
The spread of ideas in the scientific community is often viewed as a
competition, in which good ideas spread further because of greater intrinsic
fitness, and publication venue and citation counts correlate with importance
and impact. However, relatively little is known about how structural factors
influence the spread of ideas, and specifically how where an idea originates
might influence how it spreads. Here, we investigate the role of faculty hiring
networks, which embody the set of researcher transitions from doctoral to
faculty institutions, in shaping the spread of ideas in computer science, and
the importance of where in the network an idea originates. We consider
comprehensive data on the hiring events of 5032 faculty at all 205
Ph.D.-granting departments of computer science in the U.S. and Canada, and on
the timing and titles of 200,476 associated publications. Analyzing five
popular research topics, we show empirically that faculty hiring can and does
facilitate the spread of ideas in science. Having established such a mechanism,
we then analyze its potential consequences using epidemic models to simulate
the generic spread of research ideas and quantify the impact of where an idea
originates on its longterm diffusion across the network. We find that research
from prestigious institutions spreads more quickly and completely than work of
similar quality originating from less prestigious institutions. Our analyses
establish the theoretical trade-offs between university prestige and the
quality of ideas necessary for efficient circulation. Our results establish
faculty hiring as an underlying mechanism that drives the persistent epistemic
advantage observed for elite institutions, and provide a theoretical lower
bound for the impact of structural inequality in shaping the spread of ideas in
science.Comment: 10 pages, 8 figures, 1 tabl
Many-body effects on the capacitance of multilayers made from strongly correlated materials
Recent work by Kopp and Mannhart on novel electronic systems formed at oxide
interfaces has shown interesting effects on the capacitances of these devices.
We employ inhomogeneous dynamical mean-field theory to calculate the
capacitance of multilayered nanostructures. These multilayered nanostructures
are composed of semi-infinite metallic leads coupled via a strongly correlated
dielectric barrier region. The barrier region can be adjusted from a metallic
regime to a Mott insulator through adjusting the interaction strength. We
examine the effects of varying the barrier width, temperature, potential
difference, screening length, and chemical potential. We find that the
interaction strength has a relatively strong effect on the capacitance, while
the potential and temperature show weaker dependence.Comment: 19 pages, 7 figures, REVTe
Recommended from our members
Streaming clumps ejection model and the heterogeneous inner coma of Comet Wild 2
It is modeled that a significant component of the jets of some comets are released as aggregate clumps, which then fragment and shed particles after release, leading to a heterogeneous innermost coma
Recommended from our members
Preliminary results from the dust flux monitoring instrument during the encounter of Stardust spacecraft with Wild-2 comet
On January 2, 2004, the Stardust spacecraft successfully encountered the Wild-2 comet. The Dust Flux Monitoring Instrument (DFMI) provided quantitative measurements of dust particle fluxes and particle mass distributions throughout the entire flythrough
Generic susceptibilities of the half-filled Hubbard model in infinite dimensions
Around a metal-to-insulator transition driven by repulsive interaction (Mott
transition) the single particle excitations and the collective excitations are
equally important. Here we present results for the generic susceptibilities at
zero temperature in the half-filled Hubbard model in infinite dimensions.
Profiting from the high resolution of dynamic density-matrix renormalization at
all energies, results for the charge, spin and Cooper-pair susceptibilities in
the metallic and the insulating phase are computed. In the insulating phase, an
almost saturated local magnetic moment appears. In the metallic phase a
pronounced low-energy peak is found in the spin response.Comment: 12 pages, 12 figures; slight changes and one additional figure due to
referees' suggestion
Anderson-Hubbard model with box disorder: Statistical dynamical mean-field theory investigation
Strongly correlated electrons with box disorder in high-dimensional lattices
are investigated. We apply the statistical dynamical mean-field theory, which
treats local correlations non-perturbatively. The incorporation of a finite
lattice connectivity allows for the detection of disorder-induced localization
via the probability distribution function of the local density of states. We
obtain a complete paramagnetic ground state phase diagram and find
correlation-induced as well as disorder-induced metal-insulator transitions.
Our results qualitatively confirm predictions obtained by typical medium
theory. Moreover, we find that the probability distribution function of the
local density of states in the metallic phase strongly deviates from a
log-normal distribution as found for the non-interacting case.Comment: 13 pages, 15 figures, published versio
Electronic transport within a quasi two-dimensional model for rubrene single-crystal field effect transistors
Spectral and transport properties of the quasi two-dimensional adiabatic
Su-Schrieffer-Heeger model are studied adjusting the parameters in order to
model rubrene single-crystal field effect transistors with small but finite
density of injected charge carriers. We show that, with increasing temperature
, the chemical potential moves into the tail of the density of states
corresponding to localized states, but this is not enough to drive the system
into an insulating state. The mobility along different crystallographic
directions is calculated including vertex corrections which give rise to a
transport lifetime one order of magnitude smaller than spectral lifetime of the
states involved in the transport mechanism. With increasing temperature, the
transport properties reach the Ioffe-Regel limit which is ascribed to less and
less appreciable contribution of itinerant states to the conduction process.
The model provides features of the mobility in close agreement with
experiments: right order of magnitude, scaling as a power law ,
with close or larger than two, and correct anisotropy ratio between
different in-plane directions. Due to a realistic high dimensional model, the
results are not biased by uncontrolled approximations.Comment: 10 pages, 9 figures, Submitte
- …