18 research outputs found

    Comparison of the finite volume and discontinuous Galerkin schemes for the double vortex pairing problem using the SU2 software suite

    Get PDF
    A numerical investigation of finite volume (FV) and discontinuous Galerkin (DG) finite element methods in the framework of the SU2 software is presented. The accuracy of different numerical variants is assessed with reference to the low Mach double vortex pairing flow problem, which has recently been proposed as a benchmark for studying the properties of structured and unstructured grid based methods with respect to turbulent-like vortices. The present study reveals that low-Mach corrections significantly improve the accuracy of second- and third-order, unstructured grid based schemes, at flow speeds in the incompressible limit. Furthermore, the 3rd-order DG method produces results similar to 11th-order accurate FV volume schemes

    Toward Adjoint-Based Aeroacoustic Optimization for Propeller and Rotorcraft Applications

    Get PDF
    The goal of the present project is to build a multidisciplinary, rapid, robust, and accurate computational tool to optimize wing-mounted propeller designs. The full Farassat’s formulation F1A for aeroacoustic analysis is implemented in the open-source software SU2. This extension enables the prediction of far-field noise generated by moving sources. The formulation is verified, for a stationary and rotating sphere in a wind tunnel and for a tiltrotor in forward flight, by comparing the acoustic predictions of SU2 with the predictions computed by NASA’s aeroacoustics code ANOPP2. The algorithmic differentiation capability of SU2 provides discretely consistent, adjoint-based sensitivity analysis for this formulation. The adjoint-based sensitivities are verified through comparison with complex-step sensitivities

    Applications of Polynomial Chaos-Based Cokriging to Aerodynamic Design Optimization Benchmark Problems

    Get PDF
    In this work, the polynomial chaos-based Cokriging (PC-Cokriging) is applied to a benchmark aerodynamic design optimization problem. The aim is to perform fast design optimization using this multifidelity metamodel. Multifidelity metamodels use information at multiple levels of fidelity to make accurate and fast predictions. Higher amount of lower fidelity data can provide important information on the trends to a limited amount of high-fidelity (HF) data. The PC-Cokriging metamodel is a multivariate version of the polynomial chaos-based Kriging (PC-Kriging) metamodel and its construction is similar to Cokriging. It combines the advantages of the interpolation-based Kriging metamodel and the regression-based polynomial chaos expansions (PCE). In the work the PC-Cokriging model is compared to other metamodels namely PCE, Kriging, PC-Kriging and Cokriging. These metamodel are first compared in terms of global accuracy, measured by root mean squared error (RMSE) and normalized RMSE (NRMSE) for different sample sets, each with an increasing number of HF samples. These metamodels are then used to find the optimum. Once the optimum design is found computational fluid dynamics (CFD) simulations are rerun and the results are compared to each other. In this study a drag reduction of 73.1 counts was achieved. The multifidelity metamodels required 19 HF samples along with 1,055 low-fidelity to converge to the optimum drag value of 129 counts, while the single fidelity models required 155 HF samples to do the same

    Adjoint-based Trailing-Edge Noise Minimization using Porous Material

    No full text

    Aerodynamic Sensitivity Analysis based on Modified Navier-Stokes Equations

    No full text

    Shock interactions in inviscid air and CO 2 – N 2 flows in thermochemical non-equilibrium

    No full text
    The present study aims at providing insights into shock wave interference patterns in gas flows when a mixture different than air is considered. High-energy non-equilibrium flows of air and CO 2–N 2 over a double-wedge geometry are studied numerically. The impact of freestream temperature on the non-equilibrium shock interaction patterns is investigated by simulating two different sets of freestream conditions. To this purpose, the SU2 solver has been extended to account for the conservation of chemical species as well as multiple energies and coupled to the Mutation++ library (Multicomponent Thermodynamic And Transport properties for IONized gases in C++) that provides all the necessary thermochemical properties of the mixture and chemical species. An analysis of the shock interference patterns is presented with respect to the existing taxonomy of interactions. A comparison between calorically perfect ideal gas and non-equilibrium simulations confirms that non-equilibrium effects greatly influence the shock interaction patterns. When thermochemical relaxation is considered, a type VI interaction is obtained for the CO 2-dominated flow, for both freestream temperatures of 300 K and 1000 K; for air, a type V six-shock interaction and a type VI interaction are obtained, respectively. We conclude that the increase in freestream temperature has a large impact on the shock interaction pattern of the air flow, whereas for the CO 2–N 2 flow the pattern does not change
    corecore