9,123 research outputs found
Nanoscale Suppression of Magnetization at Atomically Assembled Manganite Interfaces
Using polarized X-rays, we compare the electronic and magnetic properties of
a La(2/3)Sr(1/3)MnO(3)(LSMO)/SrTiO(3)(STO) and a modified
LSMO/LaMnO(3)(LMO)/STO interface. Using the technique of X-ray resonant
magnetic scattering (XRMS), we can probe the interfaces of complicated layered
structures and quantitatively model depth-dependent magnetic profiles as a
function of distance from the interface. Comparisons of the average electronic
and magnetic properties at the interface are made independently using X-ray
absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD). The
XAS and the XMCD demonstrate that the electronic and magnetic structure of the
LMO layer at the modified interface is qualitatively equivalent to the
underlying LSMO film. From the temperature dependence of the XMCD, it is found
that the near surface magnetization for both interfaces falls off faster than
the bulk. For all temperatures in the range of 50K - 300K, the magnetic
profiles for both systems always show a ferromagnetic component at the
interface with a significantly suppressed magnetization that evolves to the
bulk value over a length scale of ~1.6 - 2.4 nm. The LSMO/LMO/STO interface
shows a larger ferromagnetic (FM) moment than the LSMO/STO interface, however
the difference is only substantial at low temperature.Comment: 4 pages, 4 figure
From quantum pulse gate to quantum pulse shaper -- enigneered frequency conversion in nonlinear optical waveguides
Full control over the spatio-temporal structure of quantum states of light is
an important goal in quantum optics, to generate for instance single-mode
quantum pulses or to encode information on multiple modes, enhancing channel
capacities. Quantum light pulses feature an inherent, rich spectral
broadband-mode structure. In recent years, exploring the use of integrated
optics as well as source-engineering has led to a deep understanding of the
pulse-mode structure of guided quantum states of light. In addition, several
groups have started to investigate the manipulation of quantum states by means
of single-photon frequency conversion. In this paper we explore new routes
towards complete control of the inherent pulse-modes of ultrafast pulsed
quantum states by employing specifically designed nonlinear waveguides with
adapted dispersion properties. Starting from our recently proposed quantum
pulse gate (QPG) we further generalize the concept of spatio-spectral
engineering for arbitrary \chitwo-based quantum processes. We analyse the
sum-frequency generation based QPG and introduce the difference-frequency
generation based quantum pulse shaper (QPS). Together, these versatile and
robust integrated optics devices allow for arbitrary manipulations of the
pulse-mode structure of ultrafast pulsed quantum states. The QPG can be
utilized to select an arbitrary pulse mode from a multimode input state,
whereas the QPS enables the generation of specific pulse modes from an input
wavepacket with Gaussian-shaped spectrum.Comment: 21 pages, 9 figure
Crossover from adiabatic to sudden interaction quenches in the Hubbard model: Prethermalization and nonequilibrium dynamics
The recent experimental implementation of condensed matter models in optical
lattices has motivated research on their nonequilibrium behavior. Predictions
on the dynamics of superconductors following a sudden quench of the pairing
interaction have been made based on the effective BCS Hamiltonian; however,
their experimental verification requires the preparation of a suitable excited
state of the Hubbard model along a twofold constraint: (i) a sufficiently
nonadiabatic ramping scheme is essential to excite the nonequilibrium dynamics,
and (ii) overheating beyond the critical temperature of superconductivity must
be avoided. For commonly discussed interaction ramps there is no clear
separation of the corresponding energy scales. Here we show that the matching
of both conditions is simplified by the intrinsic relaxation behavior of
ultracold fermionic systems: For the particular example of a linear ramp we
examine the transient regime of prethermalization [M. Moeckel and S. Kehrein,
Phys. Rev. Lett. 100, 175702 (2008)] under the crossover from sudden to
adiabatic switching using Keldysh perturbation theory. A real-time analysis of
the momentum distribution exhibits a temporal separation of an early energy
relaxation and its later thermalization by scattering events. For long but
finite ramping times this separation can be large. In the prethermalization
regime the momentum distribution resembles a zero temperature Fermi liquid as
the energy inserted by the ramp remains located in high energy modes. Thus
ultracold fermions prove robust to heating which simplifies the observation of
nonequilibrium BCS dynamics in optical lattices.Comment: 27 pages, 8 figures Second version with small modifications in
section
Variational quantum Monte Carlo calculations for solid surfaces
Quantum Monte Carlo methods have proven to predict atomic and bulk properties
of light and non-light elements with high accuracy. Here we report on the first
variational quantum Monte Carlo (VMC) calculations for solid surfaces. Taking
the boundary condition for the simulation from a finite layer geometry, the
Hamiltonian, including a nonlocal pseudopotential, is cast in a layer resolved
form and evaluated with a two-dimensional Ewald summation technique. The exact
cancellation of all Jellium contributions to the Hamiltonian is ensured. The
many-body trial wave function consists of a Slater determinant with
parameterized localized orbitals and a Jastrow factor with a common two-body
term plus a new confinement term representing further variational freedom to
take into account the existence of the surface. We present results for the
ideal (110) surface of Galliumarsenide for different system sizes. With the
optimized trial wave function, we determine some properties related to a solid
surface to illustrate that VMC techniques provide standard results under full
inclusion of many-body effects at solid surfaces.Comment: 9 pages with 2 figures (eps) included, Latex 2.09, uses REVTEX style,
submitted to Phys. Rev.
Transmission Electron Study of Heteroepitaxial Growth in the BiSrCaCuO System
Films of BiSrCaCuO and BiSrCuO have been grown using Atomic-Layer-by-Layer Molecular Beam
Epitaxy (ALL-MBE) on lattice-matched substrates. These materials have been
combined with layers of closely-related metastable compounds like BiSrCaCuO (2278) and rare-earth-doped
compounds like BiSrDyCaCuO
(Dy:2212) to form heterostructures with unique superconducting properties,
including superconductor/insulator multilayers and tunnel junctions.
Transmission electron microscopy (TEM) has been used to study the morphology
and microstructure of these heterostructures. These TEM studies shed light on
the physical properties of the films, and give insight into the growth mode of
highly anisotropic solids like BiSrCaCuO.Comment: 17 pages, submitted to J. Materials Research. Email to
[email protected] if you want to receive copies of the figure
Identification of barely visible impact damages on a stiffened composite panel with a probability-based approach
A probability-based damage detection algorithm has been implemented in order to identify barely visible impact damages in two composite stiffened panels by means of Acousto Ultrasonics (AU). A modification of RAPID (reconstruction algorithm for probabilistic inspection of defects) has been implemented to adapt the algorithm to the current structures and transducer networks. An improvement of 40% in the localization accuracy is obtained with the new algorith
Magnetically asymmetric interfaces in a (LaMnO)/(SrMnO) superlattice due to structural asymmetries
Polarized neutron reflectivity measurements of a ferromagnetic
[(LaMnO)/(SrMnO)] superlattice reveal a modulated
magnetic structure with an enhanced magnetization at the interfaces where
LaMnO was deposited on SrMnO (LMO/SMO). However, the opposite
interfaces (SMO/LMO) are found to have a reduced ferromagnetic moment. The
magnetic asymmetry arises from the difference in lateral structural roughness
of the two interfaces observed via electron microscopy, with strong
ferromagnetism present at the interfaces that are atomically smooth over tens
of nanometers. This result demonstrates that atomic-scale roughness can
destabilize interfacial phases in complex oxide heterostructures.Comment: 5 pages, 4 figure
mRNA-Expression of KRT5 and KRT20 Defines Distinct Prognostic Subgroups of Muscle-Invasive Urothelial Bladder Cancer Correlating with Histological Variants
Recently, muscle-invasive bladder cancer (MIBC) has been subclassified by gene expression profiling, with a substantial impact on therapy response and patient outcome. We tested whether these complex molecular subtypes of MIBC can be determined by mRNA detection of keratin 5 (KRT5) and keratin 20 (KRT20). Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) was applied to quantify gene expression of KRT5 and KRT20 using TaqMan (R)-based assays in 122 curatively treated MIBC patients (median age 68.0 years). Furthermore, in silico analysis of the MD Anderson Cancer Center (MDACC) cohort (GSE48277 + GSE47993) was performed. High expression of KRT5 and low expression of KRT20 were associated with significantly improved recurrence-free survival (RFS) and disease-specific survival disease specific survival (DSS: 5-year DSS for KRT5 high: 58%; 5-year DSS for KRT20 high: 29%). KRT5 and KRT20 were associated with rates of lymphovascular invasion and lymphonodal metastasis. The combination of KRT5 and KRT20 allowed identification of patients with a very poor prognosis (KRT20(+)/KRT5(-), 5-year DSS 0%, p < 0.0001). In silico analysis of the independent MDACC cohorts revealed congruent results (5-year DSS for KRT20 low vs. high: 84% vs. 40%, p = 0.042). High KRT20-expressing tumors as well as KRT20(+)/KRT- tumors were significantly enriched with aggressive urothelial carcinoma variants (micropapillary, plasmacytoid, nested)
Suppressed Magnetization at the Surfaces and Interfaces of Ferromagnetic Metallic Manganites
What happens to ferromagnetism at the surfaces and interfaces of manganites?
With the competition between charge, spin, and orbital degrees of freedom, it
is not surprising that the surface behavior may be profoundly different than
that of the bulk. Using a powerful combination of two surface probes, tunneling
and polarized x-ray interactions, this paper reviews our work on the nature of
the electronic and magnetic states at manganite surfaces and interfaces. The
general observation is that ferromagnetism is not the lowest energy state at
the surface or interface, which results in a suppression or even loss of
ferromagnetic order at the surface. Two cases will be discussed ranging from
the surface of the quasi-2D bilayer manganite
(LaSrMnO) to the 3D Perovskite
(LaSrMnO)/SrTiO interface. For the bilayer manganite,
that is, ferromagnetic and conducting in the bulk, these probes present clear
evidence for an intrinsic insulating non-ferromagnetic surface layer atop
adjacent subsurface layers that display the full bulk magnetization. This
abrupt intrinsic magnetic interface is attributed to the weak inter-bilayer
coupling native to these quasi-two-dimensional materials. This is in marked
contrast to the non-layered manganite system
(LaSrMnO/SrTiO), whose magnetization near the interface
is less than half the bulk value at low temperatures and decreases with
increasing temperature at a faster rate than the bulk.Comment: 15 pages, 13 figure
- …