4 research outputs found

    Substance P Causes Seizures in Neurocysticercosis

    Get PDF
    Neurocysticercosis (NCC), a helminth infection of the brain, is a major cause of seizures. The mediators responsible for seizures in NCC are unknown, and their management remains controversial. Substance P (SP) is a neuropeptide produced by neurons, endothelial cells and immunocytes. The current studies examined the hypothesis that SP mediates seizures in NCC. We demonstrated by immunostaining that 5 of 5 brain biopsies from NCC patients contained substance P (SP)-positive (+) cells adjacent to but not distant from degenerating worms; no SP+ cells were detected in uninfected brains. In a rodent model of NCC, seizures were induced after intrahippocampal injection of SP alone or after injection of extracts of cysticercosis granuloma obtained from infected wild type (WT), but not from infected SP precursor-deficient mice. Seizure activity correlated with SP levels within WT granuloma extracts and was prevented by intrahippocampal pre-injection of SP receptor antagonist. Furthermore, extracts of granulomas from WT mice caused seizures when injected into the hippocampus of WT mice, but not when injected into SP receptor (NK1R) deficient mice. These findings indicate that SP causes seizures in NCC, and, suggests that seizures in NCC in humans may be prevented and/or treated with SP-receptor antagonists

    Effect of SP receptor antagonist (SPra) pre-treatment on granuloma extract-induced seizure activity in rats.

    No full text
    <p>Representative EEG recordings in rats after intrahippocampal injection of an early granuloma extract pretreated without (A) or with SPra (B) are shown; double black lines indicate the period of extract injection (A and B) or SP receptor antagonist injection (B only). The behavioral seizure grade (C), seizure amplitude (D), and seizure duration (E) in rats following intrahippocampal injection of early granuloma extracts pre-treated without (Control) or with SPra (SPra; n = 6 each) are depicted graphically (*, p≤0.001, Mann-Whitney). Results are pooled data from two independent experiments.</p

    SP immunostaining of brain tissue samples from NCC-infected and uninfected patients.

    No full text
    <p>Photomicrographs of brain biopsy specimens of NCC-infected patients (P1 through P5) and brain autopsy specimens of NCC-uninfected patients (N1 and N2) are shown. Specimen slides were stained with specific polyclonal rabbit anti-SP antibody (α-SP) or control rabbit serum. Fields shown are either adjacent to the parasite (indicated by red arrow) or distant from parasite [when specimen size permitted (P1 and P2)], as indicated. SP+ cells are indicated by black arrows, 1000× magnification. Data shown is representative of one independent experiment.</p

    Effect of deletion of the NK1R gene or the SP gene in mice on granuloma extract-induced seizure activity.

    No full text
    <p>A representative EEG tracing after injection of an early granuloma extract obtained from a wild type mouse into the hippocampus of a wild type mouse (A) or NK1<sup>−/−</sup> (B) mouse is shown. The behavioral seizure grade (C), seizure amplitude (D), and seizure duration (E) in wild type or NK1<sup>−/−</sup> mice following intrahippocampal injection of extracts of early granulomas obtained from wild type mice (n = 4 each) are depicted graphically (*, p≤0.001, Mann-Whitney). EEG recordings shown (F and G) are representative of results obtained after intrahippocampal injection into a wild type mouse of an extract from an early granuloma (F) or late granuloma (G) obtained from an SPP<sup>−/−</sup> mouse. Results are pooled data from two independent experiments.</p
    corecore