215 research outputs found

    Dynamics of stripe patterns in type-I superconductors subject to a rotating field

    Full text link
    The evolution of stripe patterns in type-I superconductors subject to a rotating in-plane magnetic field is investigated magneto-optically. The experimental results reveal a very rich and interesting behavior of the patterns. For small rotation angles, a small parallel displacement of the main part of the stripes and a co-rotation of their very ends is observed. For larger angles, small sideward protrusions develop, which then generate a zigzag instability, ultimately leading to a breaking of stripes into smaller segments. The short segments then start to co-rotate with the applied field although they lag behind by approximately 10∘10^\circ. Very interestingly, if the rotation is continued, also reconnection of segments into longer stripes takes place. These observations demonstrate the importance of pinning in type-I superconductors.Comment: To appear in Phys. Rev.

    State selection in the noisy stabilized Kuramoto-Sivashinsky equation

    Full text link
    In this work, we study the 1D stabilized Kuramoto Sivashinsky equation with additive uncorrelated stochastic noise. The Eckhaus stable band of the deterministic equation collapses to a narrow region near the center of the band. This is consistent with the behavior of the phase diffusion constants of these states. Some connections to the phenomenon of state selection in driven out of equilibrium systems are made.Comment: 8 pages, In version 3 we corrected minor/typo error

    The Nikolaevskiy equation with dispersion

    Full text link
    The Nikolaevskiy equation was originally proposed as a model for seismic waves and is also a model for a wide variety of systems incorporating a neutral, Goldstone mode, including electroconvection and reaction-diffusion systems. It is known to exhibit chaotic dynamics at the onset of pattern formation, at least when the dispersive terms in the equation are suppressed, as is commonly the practice in previous analyses. In this paper, the effects of reinstating the dispersive terms are examined. It is shown that such terms can stabilise some of the spatially periodic traveling waves; this allows us to study the loss of stability and transition to chaos of the waves. The secondary stability diagram (Busse balloon) for the traveling waves can be remarkably complicated.Comment: 24 pages; accepted for publication in Phys. Rev.

    The Formation and Coarsening of the Concertina Pattern

    Full text link
    The concertina is a magnetization pattern in elongated thin-film elements of a soft material. It is a ubiquitous domain pattern that occurs in the process of magnetization reversal in direction of the long axis of the small element. Van den Berg argued that this pattern grows out of the flux closure domains as the external field is reduced. Based on experimental observations and theory, we argue that in sufficiently elongated thin-film elements, the concertina pattern rather bifurcates from an oscillatory buckling mode. Using a reduced model derived by asymptotic analysis and investigated by numerical simulation, we quantitatively predict the average period of the concertina pattern and qualitatively predict its hysteresis. In particular, we argue that the experimentally observed coarsening of the concertina pattern is due to secondary bifurcations related to an Eckhaus instability. We also link the concertina pattern to the magnetization ripple and discuss the effect of a weak (crystalline or induced) anisotropy

    The self-consistent gravitational self-force

    Full text link
    I review the problem of motion for small bodies in General Relativity, with an emphasis on developing a self-consistent treatment of the gravitational self-force. An analysis of the various derivations extant in the literature leads me to formulate an asymptotic expansion in which the metric is expanded while a representative worldline is held fixed; I discuss the utility of this expansion for both exact point particles and asymptotically small bodies, contrasting it with a regular expansion in which both the metric and the worldline are expanded. Based on these preliminary analyses, I present a general method of deriving self-consistent equations of motion for arbitrarily structured (sufficiently compact) small bodies. My method utilizes two expansions: an inner expansion that keeps the size of the body fixed, and an outer expansion that lets the body shrink while holding its worldline fixed. By imposing the Lorenz gauge, I express the global solution to the Einstein equation in the outer expansion in terms of an integral over a worldtube of small radius surrounding the body. Appropriate boundary data on the tube are determined from a local-in-space expansion in a buffer region where both the inner and outer expansions are valid. This buffer-region expansion also results in an expression for the self-force in terms of irreducible pieces of the metric perturbation on the worldline. Based on the global solution, these pieces of the perturbation can be written in terms of a tail integral over the body's past history. This approach can be applied at any order to obtain a self-consistent approximation that is valid on long timescales, both near and far from the small body. I conclude by discussing possible extensions of my method and comparing it to alternative approaches.Comment: 44 pages, 4 figure

    Human T Cell Rapamycin Resistance And Th1/Tc1 Polarization Augment Xenogeneic Graft-Versus-Host Disease

    Get PDF

    Reformulating the Schrodinger equation as a Shabat-Zakharov system

    Full text link
    We reformulate the second-order Schrodinger equation as a set of two coupled first order differential equations, a so-called "Shabat-Zakharov system", (sometimes called a "Zakharov-Shabat" system). There is considerable flexibility in this approach, and we emphasise the utility of introducing an "auxiliary condition" or "gauge condition" that is used to cut down the degrees of freedom. Using this formalism, we derive the explicit (but formal) general solution to the Schrodinger equation. The general solution depends on three arbitrarily chosen functions, and a path-ordered exponential matrix. If one considers path ordering to be an "elementary" process, then this represents complete quadrature, albeit formal, of the second-order linear ODE.Comment: 18 pages, plain LaTe

    Long-Time Asymptotics for the Korteweg-de Vries Equation via Nonlinear Steepest Descent

    Full text link
    We apply the method of nonlinear steepest descent to compute the long-time asymptotics of the Korteweg-de Vries equation for decaying initial data in the soliton and similarity region. This paper can be viewed as an expository introduction to this method.Comment: 31 page

    Negaton and Positon Solutions of the KDV Equation

    Full text link
    We give a systematic classification and a detailed discussion of the structure, motion and scattering of the recently discovered negaton and positon solutions of the Korteweg-de Vries equation. There are two distinct types of negaton solutions which we label [Sn][S^{n}] and [Cn][C^{n}], where (n+1)(n+1) is the order of the Wronskian used in the derivation. For negatons, the number of singularities and zeros is finite and they show very interesting time dependence. The general motion is in the positive xx direction, except for certain negatons which exhibit one oscillation around the origin. In contrast, there is just one type of positon solution, which we label [C~n][\tilde C^n]. For positons, one gets a finite number of singularities for nn odd, but an infinite number for even values of nn. The general motion of positons is in the negative xx direction with periodic oscillations. Negatons and positons retain their identities in a scattering process and their phase shifts are discussed. We obtain a simple explanation of all phase shifts by generalizing the notions of ``mass" and ``center of mass" to singular solutions. Finally, it is shown that negaton and positon solutions of the KdV equation can be used to obtain corresponding new solutions of the modified KdV equation.Comment: 20 pages plus 12 figures(available from authors on request),Latex fil
    • …
    corecore