1,844 research outputs found

    Symmetry Decomposition of Chaotic Dynamics

    Full text link
    Discrete symmetries of dynamical flows give rise to relations between periodic orbits, reduce the dynamics to a fundamental domain, and lead to factorizations of zeta functions. These factorizations in turn reduce the labor and improve the convergence of cycle expansions for classical and quantum spectra associated with the flow. In this paper the general formalism is developed, with the NN-disk pinball model used as a concrete example and a series of physically interesting cases worked out in detail.Comment: CYCLER Paper 93mar01

    Small Disks and Semiclassical Resonances

    Full text link
    We study the effect on quantum spectra of the existence of small circular disks in a billiard system. In the limit where the disk radii vanish there is no effect, however this limit is approached very slowly so that even very small radii have comparatively large effects. We include diffractive orbits which scatter off the small disks in the periodic orbit expansion. This situation is formally similar to edge diffraction except that the disk radii introduce a length scale in the problem such that for wave lengths smaller than the order of the disk radius we recover the usual semi-classical approximation; however, for wave lengths larger than the order of the disk radius there is a qualitatively different behaviour. We test the theory by successfully estimating the positions of scattering resonances in geometries consisting of three and four small disks.Comment: Final published version - some changes in the discussion and the labels on one figure are correcte

    The spectral form factor is not self-averaging

    Full text link
    The spectral form factor, k(t), is the Fourier transform of the two level correlation function C(x), which is the averaged probability for finding two energy levels spaced x mean level spacings apart. The average is over a piece of the spectrum of width W in the neighborhood of energy E0. An additional ensemble average is traditionally carried out, as in random matrix theory. Recently a theoretical calculation of k(t) for a single system, with an energy average only, found interesting nonuniversal semiclassical effects at times t approximately unity in units of {Planck's constant) /(mean level spacing). This is of great interest if k(t) is self-averaging, i.e, if the properties of a typical member of the ensemble are the same as the ensemble average properties. We here argue that this is not always the case, and that for many important systems an ensemble average is essential to see detailed properties of k(t). In other systems, notably the Riemann zeta function, it is likely possible to see the properties by an analysis of the spectrum.Comment: 4 pages, RevTex, no figures, submitted to Phys. Rev. Lett., permanent e-mail address, [email protected]

    Semiclassical cross section correlations

    Full text link
    We calculate within a semiclassical approximation the autocorrelation function of cross sections. The starting point is the semiclassical expression for the diagonal matrix elements of an operator. For general operators with a smooth classical limit the autocorrelation function of such matrix elements has two contributions with relative weights determined by classical dynamics. We show how the random matrix result can be obtained if the operator approaches a projector onto a single initial state. The expressions are verified in calculations for the kicked rotor.Comment: 6 pages, 2 figure

    Signatures of Classical Periodic Orbits on a Smooth Quantum System

    Full text link
    Gutzwiller's trace formula and Bogomolny's formula are applied to a non--specific, non--scalable Hamiltonian system, a two--dimensional anharmonic oscillator. These semiclassical theories reproduce well the exact quantal results over a large spatial and energy range.Comment: 12 pages, uuencoded postscript file (1526 kb

    Non-sequential triple ionization in strong fields

    Get PDF
    We consider the final stage of triple ionization of atoms in a strong linearly polarized laser field. We propose that for intensities below the saturation value for triple ionization the process is dominated by the simultaneous escape of three electrons from a highly excited intermediate complex. We identify within a classical model two pathways to triple ionization, one with a triangular configuration of electrons and one with a more linear one. Both are saddles in phase space. A stability analysis indicates that the triangular configuration has the larger cross sections and should be the dominant one. Trajectory simulations within the dominant symmetry subspace reproduce the experimentally observed distribution of ion momenta parallel to the polarization axis.Comment: 9 pages, 8 figures, accepted for publication in Phys. Rev.

    Can Galactic Observations Be Explained by a Relativistic Gravity Theory?

    Get PDF
    We consider the possibility of an alternative gravity theory explaining the dynamics of galactic systems without dark matter. From very general assumptions about the structure of a relativistic gravity theory we derive a general expression for the metric to order (v/c)2(v/c)^2. This allows us to compare the predictions of the theory with various experimental data: the Newtonian limit, light deflection and retardation, rotation of galaxies and gravitational lensing. Our general conclusion is that the possibility for any gravity theory to explain the behaviour of galaxies without dark matter is rather improbable.Comment: 12p, REVTeX 3.

    Chiral and herringbone symmetry breaking in water-surface monolayers

    Get PDF
    We report the observation from monolayers of eicosanoic acid in the L′2 phase of three distinct out-of-plane first-order diffraction peaks, indicating molecular tilt in a nonsymmetry direction and hence the absence of mirror symmetry. At lower pressures the molecules tilt in the direction of their nearest neighbors. In this region we find a structural transition, which we tentatively identify as the rotator-herringbone transition L2d−L2h

    Classical, semiclassical, and quantum investigations of the 4-sphere scattering system

    Full text link
    A genuinely three-dimensional system, viz. the hyperbolic 4-sphere scattering system, is investigated with classical, semiclassical, and quantum mechanical methods at various center-to-center separations of the spheres. The efficiency and scaling properties of the computations are discussed by comparisons to the two-dimensional 3-disk system. While in systems with few degrees of freedom modern quantum calculations are, in general, numerically more efficient than semiclassical methods, this situation can be reversed with increasing dimension of the problem. For the 4-sphere system with large separations between the spheres, we demonstrate the superiority of semiclassical versus quantum calculations, i.e., semiclassical resonances can easily be obtained even in energy regions which are unattainable with the currently available quantum techniques. The 4-sphere system with touching spheres is a challenging problem for both quantum and semiclassical techniques. Here, semiclassical resonances are obtained via harmonic inversion of a cross-correlated periodic orbit signal.Comment: 12 pages, 5 figures, submitted to Phys. Rev.

    Turbulence and passive scalar transport in a free-slip surface

    Full text link
    We consider the two-dimensional (2D) flow in a flat free-slip surface that bounds a three-dimensional (3D) volume in which the flow is turbulent. The equations of motion for the two-dimensional flow in the surface are neither compressible nor incompressible but strongly influenced by the 3D flow underneath the surface. The velocity correlation functions in the 2D surface and in the 3D volume scale with the same exponents. In the viscous subrange the amplitudes are the same, but in the inertial subrange the 2D one is reduced to 2/3 of the 3D amplitude. The surface flow is more strongly intermittent than the 3D volume flow. Geometric scaling theory is used to derive a relation between the scaling of the velocity field and the density fluctuations of a passive scalar advected on the surface.Comment: 11 pages, 10 Postscript figure
    corecore