2,422 research outputs found
Semiclassical Quantization by Pade Approximant to Periodic Orbit Sums
Periodic orbit quantization requires an analytic continuation of
non-convergent semiclassical trace formulae. We propose a method for
semiclassical quantization based upon the Pade approximant to the periodic
orbit sums. The Pade approximant allows the re-summation of the typically
exponentially divergent periodic orbit terms. The technique does not depend on
the existence of a symbolic dynamics and can be applied to both bound and open
systems. Numerical results are presented for two different systems with chaotic
and regular classical dynamics, viz. the three-disk scattering system and the
circle billiard.Comment: 7 pages, 3 figures, submitted to Europhys. Let
Echoes in classical dynamical systems
Echoes arise when external manipulations to a system induce a reversal of its
time evolution that leads to a more or less perfect recovery of the initial
state. We discuss the accuracy with which a cloud of trajectories returns to
the initial state in classical dynamical systems that are exposed to additive
noise and small differences in the equations of motion for forward and backward
evolution. The cases of integrable and chaotic motion and small or large noise
are studied in some detail and many different dynamical laws are identified.
Experimental tests in 2-d flows that show chaotic advection are proposed.Comment: to be published in J. Phys.
Semiclassical cross section correlations
We calculate within a semiclassical approximation the autocorrelation
function of cross sections. The starting point is the semiclassical expression
for the diagonal matrix elements of an operator. For general operators with a
smooth classical limit the autocorrelation function of such matrix elements has
two contributions with relative weights determined by classical dynamics. We
show how the random matrix result can be obtained if the operator approaches a
projector onto a single initial state. The expressions are verified in
calculations for the kicked rotor.Comment: 6 pages, 2 figure
Approach to ergodicity in quantum wave functions
According to theorems of Shnirelman and followers, in the semiclassical limit
the quantum wavefunctions of classically ergodic systems tend to the
microcanonical density on the energy shell. We here develop a semiclassical
theory that relates the rate of approach to the decay of certain classical
fluctuations. For uniformly hyperbolic systems we find that the variance of the
quantum matrix elements is proportional to the variance of the integral of the
associated classical operator over trajectory segments of length , and
inversely proportional to , where is the Heisenberg
time, being the mean density of states. Since for these systems the
classical variance increases linearly with , the variance of the matrix
elements decays like . For non-hyperbolic systems, like Hamiltonians
with a mixed phase space and the stadium billiard, our results predict a slower
decay due to sticking in marginally unstable regions. Numerical computations
supporting these conclusions are presented for the bakers map and the hydrogen
atom in a magnetic field.Comment: 11 pages postscript and 4 figures in two files, tar-compressed and
uuencoded using uufiles, to appear in Phys Rev E. For related papers, see
http://www.icbm.uni-oldenburg.de/icbm/kosy/ag.htm
Symmetry Decomposition of Chaotic Dynamics
Discrete symmetries of dynamical flows give rise to relations between
periodic orbits, reduce the dynamics to a fundamental domain, and lead to
factorizations of zeta functions. These factorizations in turn reduce the labor
and improve the convergence of cycle expansions for classical and quantum
spectra associated with the flow. In this paper the general formalism is
developed, with the -disk pinball model used as a concrete example and a
series of physically interesting cases worked out in detail.Comment: CYCLER Paper 93mar01
Small Disks and Semiclassical Resonances
We study the effect on quantum spectra of the existence of small circular
disks in a billiard system. In the limit where the disk radii vanish there is
no effect, however this limit is approached very slowly so that even very small
radii have comparatively large effects. We include diffractive orbits which
scatter off the small disks in the periodic orbit expansion. This situation is
formally similar to edge diffraction except that the disk radii introduce a
length scale in the problem such that for wave lengths smaller than the order
of the disk radius we recover the usual semi-classical approximation; however,
for wave lengths larger than the order of the disk radius there is a
qualitatively different behaviour. We test the theory by successfully
estimating the positions of scattering resonances in geometries consisting of
three and four small disks.Comment: Final published version - some changes in the discussion and the
labels on one figure are correcte
Liquid mercury cathode electron bombardment ion thrusters Summary report, 1 Aug. 1964 - 31 Oct. 1966
Life tests of liquid mercury cathodes for electron bombardment ion thruster
How does flow in a pipe become turbulent?
The transition to turbulence in pipe flow does not follow the scenario
familiar from Rayleigh-Benard or Taylor-Couette flow since the laminar profile
is stable against infinitesimal perturbations for all Reynolds numbers.
Moreover, even when the flow speed is high enough and the perturbation
sufficiently strong such that turbulent flow is established, it can return to
the laminar state without any indication of the imminent decay. In this
parameter range, the lifetimes of perturbations show a sensitive dependence on
initial conditions and an exponential distribution. The turbulence seems to be
supported by three-dimensional travelling waves which appear transiently in the
flow field. The boundary between laminar and turbulent dynamics is formed by
the stable manifold of an invariant chaotic state. We will also discuss the
relation between observations in short, periodically continued domains, and the
dynamics in fully extended puffs.Comment: for the proceedings of statphys 2
Wave function correlations on the ballistic scale: Exploring quantum chaos by quantum disorder
We study the statistics of wave functions in a ballistic chaotic system. The
statistical ensemble is generated by adding weak smooth disorder. The
conjecture of Gaussian fluctuations of wave functions put forward by Berry and
generalized by Hortikar and Srednicki is proven to hold on sufficiently short
distances, while it is found to be strongly violated on larger scales. This
also resolves the conflict between the above conjecture and the wave function
normalization. The method is further used to study ballistic correlations of
wave functions in a random magnetic field.Comment: 4 page
Pattern fluctuations in transitional plane Couette flow
In wide enough systems, plane Couette flow, the flow established between two
parallel plates translating in opposite directions, displays alternatively
turbulent and laminar oblique bands in a given range of Reynolds numbers R. We
show that in periodic domains that contain a few bands, for given values of R
and size, the orientation and the wavelength of this pattern can fluctuate in
time. A procedure is defined to detect well-oriented episodes and to determine
the statistics of their lifetimes. The latter turn out to be distributed
according to exponentially decreasing laws. This statistics is interpreted in
terms of an activated process described by a Langevin equation whose
deterministic part is a standard Landau model for two interacting complex
amplitudes whereas the noise arises from the turbulent background.Comment: 13 pages, 11 figures. Accepted for publication in Journal of
statistical physic
- …