1,953 research outputs found
Southwest Research Institute assistance to NASA in biomedical areas of the technology utilization program Final report, 1 Feb. 1969 - 24 Aug. 1970
Research progress in technology transfer by NASA Biomedical Application Tea
Southwest Research Institute assistance to NASA in biomedical areas of the Technology Utilization program
Technology utilization in biomedical areas, particularly for infants and handicapped person
Southwest Research Institute assistance to NASA in biomedical areas of the technology
Significant applications of aerospace technology were achieved. These applications include: a miniaturized, noninvasive system to telemeter electrocardiographic signals of heart transplant patients during their recuperative period as graded situations are introduced; and economical vital signs monitor for use in nursing homes and rehabilitation hospitals to indicate the onset of respiratory arrest; an implantable telemetry system to indicate the onset of the rejection phenomenon in animals undergoing cardiac transplants; an exceptionally accurate current proportional temperature controller for pollution studies; an automatic, atraumatic blood pressure measurement device; materials for protecting burned areas in contact with joint bender splints; a detector to signal the passage of animals by a given point during ecology studies; and special cushioning for use with below-knee amputees to protect the integrity of the skin at the stump/prosthesis interface
A theoretical basis for the analysis of redundant software subject to coincident errors
Fundamental to the development of redundant software techniques fault-tolerant software, is an understanding of the impact of multiple-joint occurrences of coincident errors. A theoretical basis for the study of redundant software is developed which provides a probabilistic framework for empirically evaluating the effectiveness of the general (N-Version) strategy when component versions are subject to coincident errors, and permits an analytical study of the effects of these errors. The basic assumptions of the model are: (1) independently designed software components are chosen in a random sample; and (2) in the user environment, the system is required to execute on a stationary input series. The intensity of coincident errors, has a central role in the model. This function describes the propensity to introduce design faults in such a way that software components fail together when executing in the user environment. The model is used to give conditions under which an N-Version system is a better strategy for reducing system failure probability than relying on a single version of software. A condition which limits the effectiveness of a fault-tolerant strategy is studied, and it is posted whether system failure probability varies monotonically with increasing N or whether an optimal choice of N exists
Reflection of Channel-Guided Solitons at Junctions in Two-Dimensional Nonlinear Schroedinger Equation
Solitons confined in channels are studied in the two-dimensional nonlinear
Schr\"odinger equation. We study the dynamics of two channel-guided solitons
near the junction where two channels are merged. The two solitons merge into
one soliton, when there is no phase shift. If a phase difference is given to
the two solitons, the Josephson oscillation is induced. The Josephson
oscillation is amplified near the junction. The two solitons are reflected when
the initial velocity is below a critical value.Comment: 3 pages, 2 figure
Chaos and Correspondence in Classical and Quantum Hamiltonian Ratchets: A Heisenberg Approach
Previous work [Gong and Brumer, Phys. Rev. Lett., 97, 240602 (2006)]
motivates this study as to how asymmetry-driven quantum ratchet effects can
persist despite a corresponding fully chaotic classical phase space. A simple
perspective of ratchet dynamics, based on the Heisenberg picture, is
introduced. We show that ratchet effects are in principle of common origin in
classical and quantum mechanics, though full chaos suppresses these effects in
the former but not necessarily the latter. The relationship between ratchet
effects and coherent dynamical control is noted.Comment: 21 pages, 7 figures, to appear in Phys. Rev.
Semiclassical cross section correlations
We calculate within a semiclassical approximation the autocorrelation
function of cross sections. The starting point is the semiclassical expression
for the diagonal matrix elements of an operator. For general operators with a
smooth classical limit the autocorrelation function of such matrix elements has
two contributions with relative weights determined by classical dynamics. We
show how the random matrix result can be obtained if the operator approaches a
projector onto a single initial state. The expressions are verified in
calculations for the kicked rotor.Comment: 6 pages, 2 figure
A Computational Procedure to Detect a New Type of High Dimensional Chaotic Saddle and its Application to the 3-D Hill's Problem
A computational procedure that allows the detection of a new type of
high-dimensional chaotic saddle in Hamiltonian systems with three degrees of
freedom is presented. The chaotic saddle is associated with a so-called
normally hyperbolic invariant manifold (NHIM). The procedure allows to compute
appropriate homoclinic orbits to the NHIM from which we can infer the existence
a chaotic saddle. NHIMs control the phase space transport across an equilibrium
point of saddle-centre-...-centre stability type, which is a fundamental
mechanism for chemical reactions, capture and escape, scattering, and, more
generally, ``transformation'' in many different areas of physics. Consequently,
the presented methods and results are of broad interest. The procedure is
illustrated for the spatial Hill's problem which is a well known model in
celestial mechanics and which gained much interest e.g. in the study of the
formation of binaries in the Kuiper belt.Comment: 12 pages, 6 figures, pdflatex, submitted to JPhys
How does flow in a pipe become turbulent?
The transition to turbulence in pipe flow does not follow the scenario
familiar from Rayleigh-Benard or Taylor-Couette flow since the laminar profile
is stable against infinitesimal perturbations for all Reynolds numbers.
Moreover, even when the flow speed is high enough and the perturbation
sufficiently strong such that turbulent flow is established, it can return to
the laminar state without any indication of the imminent decay. In this
parameter range, the lifetimes of perturbations show a sensitive dependence on
initial conditions and an exponential distribution. The turbulence seems to be
supported by three-dimensional travelling waves which appear transiently in the
flow field. The boundary between laminar and turbulent dynamics is formed by
the stable manifold of an invariant chaotic state. We will also discuss the
relation between observations in short, periodically continued domains, and the
dynamics in fully extended puffs.Comment: for the proceedings of statphys 2
- …