334 research outputs found

    CHEM2D-OPP: A new linearized gas-phase ozone photochemistry parameterization for high-altitude NWP and climate models

    Get PDF
    The new CHEM2D-Ozone Photochemistry Parameterization (CHEM2D-OPP) for high-altitude numerical weather prediction (NWP) systems and climate models specifies the net ozone photochemical tendency and its sensitivity to changes in ozone mixing ratio, temperature and overhead ozone column based on calculations from the CHEM2D interactive middle atmospheric photochemical transport model. We evaluate CHEM2D-OPP performance using both short-term (6-day) and long-term (1-year) stratospheric ozone simulations with the prototype high-altitude NOGAPS-ALPHA forecast model. An inter-comparison of NOGAPS-ALPHA 6-day ozone hindcasts for 7 February 2005 with ozone photochemistry parameterizations currently used in operational NWP systems shows that CHEM2D-OPP yields the best overall agreement with both individual Aura Microwave Limb Sounder ozone profile measurements and independent hemispheric (10°–90° N) ozone analysis fields. A 1-year free-running NOGAPS-ALPHA simulation using CHEM2D-OPP produces a realistic seasonal cycle in zonal mean ozone throughout the stratosphere. We find that the combination of a model cold temperature bias at high latitudes in winter and a warm bias in the CHEM2D-OPP temperature climatology can degrade the performance of the linearized ozone photochemistry parameterization over seasonal time scales despite the fact that the parameterized temperature dependence is weak in these regions

    Influence of mountain waves and NAT nucleation mechanisms on Polar Stratospheric Cloud formation at local and synoptic scales during the 1999?2000 Arctic winter

    No full text
    International audienceA scheme for introducing mountain wave-induced temperature pertubations in a microphysical PSC model has been developed. A data set of temperature fluctuations attributable to mountain waves as computed by the Mountain Wave Forecast Model (MWFM-2) has been used for the study. The PSC model has variable microphysics, enabling different nucleation mechanisms for nitric acid trihydrate, NAT, to be employed. In particular, the difference between the formation of NAT and ice particles in a scenario where NAT formation is not dependent on preexisting ice particles, allowing NAT to form at temperatures above the ice frost point, Tice, and a scenario, where NAT nucleation is dependent on preexisting ice particles, is examined. The performance of the microphysical model in the different microphysical scenarios and a number of temperature scenarios with and without the influence of mountain waves is tested through comparisons with lidar measurements of PSCs made from the NASA DC-8 on 23 and 25 January during the SOLVE/THESEO 2000 campaign in the 1999?2000 winter and the effect of mountain waves on local PSC production is evaluated in the different microphysical scenarios. Mountain wave-induced temperature fluctuations are introduced in vortex-covering model runs, extending the full 1999?2000 winter season, and the effect of mountain waves on large-scale PSC production is estimated in the different microphysical scenarios

    Potential application of hydrogen in traumatic and surgical brain injury, stroke and neonatal hypoxia-ischemia

    Get PDF
    This article summarized findings of current preclinical studies that implemented hydrogen administration, either in the gas or liquid form, as treatment application for neurological disorders including traumatic brain injury (TBI), surgically induced brain injury (SBI), stroke, and neonatal hypoxic-ischemic brain insult (HI). Most reviewed studies demonstrated neuroprotective effects of hydrogen administration. Even though anti-oxidative potentials have been reported in several studies, further neuroprotective mechanisms of hydrogen therapy remain to be elucidated. Hydrogen may serve as an adjunct treatment for neurological disorders

    Assimilation of stratospheric and mesospheric temperatures from MLS and SABER into a global NWP model

    No full text
    International audienceThe forecast model and three-dimensional variational data assimilation components of the Navy Operational Global Atmospheric Prediction System (NOGAPS) have each been extended into the upper stratosphere and mesosphere to form an Advanced Level Physics High Altitude (ALPHA) version of NOGAPS extending to ~100 km. This NOGAPS-ALPHA NWP prototype is used to assimilate stratospheric and mesospheric temperature data from the Microwave Limb Sounder (MLS) and the Sounding of the Atmosphere using Broadband Radiometry (SABER) instruments. A 60-day analysis period in January and February, 2006, was chosen that includes a well documented stratospheric sudden warming. SABER temperatures indicate that the SSW caused the polar winter stratopause at ~40 km to disappear, then reform at ~80 km altitude and slowly descend during February. The NOGAPS-ALPHA analysis reproduces this observed stratospheric and mesospheric temperature structure, as well as realistic evolution of zonal winds, residual velocities, and Eliassen-Palm fluxes that aid interpretation of the vertically deep circulation and eddy flux anomalies that developed in response to this wave-breaking event. The observation minus forecast (O-F) standard deviations for MLS and SABER are ~2 K in the mid-stratosphere and increase monotonically to about 6 K in the upper mesosphere. Increasing O-F standard deviations in the mesosphere are expected due to increasing instrument error and increasing geophysical variance at small spatial scales in the forecast model. In the mid/high latitude winter regions, 10-day forecast skill is improved throughout the upper stratosphere and mesosphere when the model is initialized using the high-altitude analysis based on assimilation of both SABER and MLS data

    Synthesis and Characterization of Ruthenium and Rhenium Nucleosides

    Get PDF
    We report the synthesis and characterization of new ruthenium and rhenium nucleosides [Ru(tolyl-acac)_2(IMPy)-T] (tolyl-acac = di(p-methylbenzonatemethane), IMPy = 2‘-iminomethylpyridine, T = thymidine) (5) and [Re(CO)_3(IMPy)-T]Cl (9), respectively. Structural analysis of 9 shows that the incorporation of this metal complex causes minimal perturbation to the sugar backbone and the nucleobase. Eletrochemical (5, E_(1/2) = 0.265 V vs NHE; 9, E_(1/2) = 1.67 V vs NHE), absorption (5, λ_(max) = 600, 486 nm; 9, λ_(max) = 388 nm), and emission (9, λ_(max) = 770 nm, π = 17 ns) data indicate that 5 and 9 are suitable probes for DNA-mediated ground-state electron-transfer studies. The separation and characterization of diastereoisomers of 5 and bipyridyl-based ruthenium nucleoside [Ru(bpy)_2(IMPy)-T]^(2+) (7) are reported

    Contemporary nursing graduates\u27 transition to practice: A critical review of transition models

    Get PDF
    AIM AND OBJECTIVE: To critically review contemporary transition theories to determine how they apply to the newly qualified graduate registered nurse programmes. BACKGROUND: Graduate nurse transition to employment is the time of significant change which has resulted in high attrition rates. Graduates are often challenged by their expectation of nursing practice and the reality of the role. The transition from hospital-based training to university-based training has resulted in the need for primary employment to commence with graduate/orientation/internship programmes to help support new graduates transition into clinical practice. One transition model, Duchscher\u27s stages of transition theory, utilised three former theories to develop a final model. DESIGN: A narrative critical literature review. METHOD: The theories selected for the review were Kramer\u27s reality shock theory, Benner\u27s novice to expert theory, Bridges transition theory and Duchscher\u27s stages of transition theory. CONCLUSION: Duchscher\u27s stages of transition theory reflects the experiences of registered nursing transition into the workforce directly from university. The application of the theory is effective to guide understanding of the current challenges that new graduate nurse\u27s experience today. There is a need for new graduates to complete their university degree as advanced beginners in order to decrease the experience of transition shock and keep pace with rapidly changing demands of the clinical environment. This may be achieved by increasing ward-based simulation in university education. A theoretical framework can provide a deep understanding of the various stages and processes of transition and enable development of successful programmes. RELEVANCE TO CLINICAL PRACTICE: Both universities and hospitals need to adapt their current practice to align with the needs of new graduates due to large student numbers and ongoing systematic advancements to decrease the attrition rate

    AMP second national workshop. Asthma Management Program

    Get PDF
    Powerpoint presentation presented at the Asthma Management Program: Second National Workshop, Stamford Plaza Sydney Airport Hote

    NOGAPS-ALPHA model simulations of stratospheric ozone during the SOLVE2 campaign

    Get PDF
    This paper presents three-dimensional prognostic O<sub>3</sub> simulations with parameterized gas-phase photochemistry from the new NOGAPS-ALPHA middle atmosphere forecast model. We compare 5-day NOGAPS-ALPHA hindcasts of stratospheric O<sub>3</sub> with satellite and DC-8 aircraft measurements for two cases during the SOLVE II campaign: (1) the cold, isolated vortex during 11-16 January 2003; and (2) the rapidly developing stratospheric warming of 17-22 January 2003. In the first case we test three different photochemistry parameterizations. NOGAPS-ALPHA O<sub>3</sub> simulations using the NRL-CHEM2D parameterization give the best agreement with SAGE III and POAM III profile measurements. 5-day NOGAPS-ALPHA hindcasts of polar O<sub>3</sub> initialized with the NASA GEOS4 analyses produce better agreement with observations than do the operational ECMWF O<sub>3</sub> forecasts of case 1. For case 2, both NOGAPS-ALPHA and ECMWF 114-h forecasts of the split vortex structure in lower stratospheric O<sub>3</sub> on 21 January 2003 show comparable skill. Updated ECMWF O<sub>3</sub> forecasts of this event at hour 42 display marked improvement from the 114-h forecast; corresponding updated 42-hour NOGAPS-ALPHA prognostic O<sub>3</sub> fields initialized with the GEOS4 analyses do not improve significantly. When NOGAPS-ALPHA prognostic O<sub>3</sub> is initialized with the higher resolution ECMWF O<sub>3</sub> analyses, the NOGAPS-ALPHA 42-hour lower stratospheric O<sub>3</sub> fields closely match the operational 42-hour ECMWF O<sub>3</sub> forecast of the 21 January event. We find that stratospheric O<sub>3</sub> forecasts at high latitudes in winter can depend on both model initial conditions and the treatment of photochemistry over periods of 1-5 days. Overall, these results show that the new O<sub>3</sub> initialization, photochemistry parameterization, and spectral transport in the NOGAPS-ALPHA NWP model can provide reliable short-range stratospheric O<sub>3</sub> forecasts during Arctic winter
    • …
    corecore