12 research outputs found

    Potential application of hydrogen in traumatic and surgical brain injury, stroke and neonatal hypoxia-ischemia

    Get PDF
    This article summarized findings of current preclinical studies that implemented hydrogen administration, either in the gas or liquid form, as treatment application for neurological disorders including traumatic brain injury (TBI), surgically induced brain injury (SBI), stroke, and neonatal hypoxic-ischemic brain insult (HI). Most reviewed studies demonstrated neuroprotective effects of hydrogen administration. Even though anti-oxidative potentials have been reported in several studies, further neuroprotective mechanisms of hydrogen therapy remain to be elucidated. Hydrogen may serve as an adjunct treatment for neurological disorders

    Stratospheric Gravity Wave Fluxes and Scales during DEEPWAVE

    Get PDF
    During the Deep Propagating Gravity Wave Experiment (DEEPWAVE) project in June and July 2014, the Gulfstream V research aircraft flew 97 legs over the Southern Alps of New Zealand and 150 legs over the Tasman Sea and Southern Ocean, mostly in the low stratosphere at 12.1-km altitude. Improved instrument calibration, redundant sensors, longer flight legs, energy flux estimation, and scale analysis revealed several new gravity wave properties. Over the sea, flight-level wave fluxes mostly fell below the detection threshold. Over terrain, disturbances had characteristic mountain wave attributes of positive vertical energy flux (EFz), negative zonal momentum flux, and upwind horizontal energy flux. In some cases, the fluxes changed rapidly within an 8-h flight, even though environmental conditions were nearly unchanged. The largest observed zonal momentum and vertical energy fluxes were MFx = −550 mPa and EFz = 22 W m−2, respectively. A wide variety of disturbance scales were found at flight level over New Zealand. The vertical wind variance at flight level was dominated by short “fluxless” waves with wavelengths in the 6–15-km range. Even shorter scales, down to 500 m, were found in wave breaking regions. The wavelength of the flux-carrying mountain waves was much longer—mostly between 60 and 150 km. In the strong cases, however, with EFz \u3e 4 W m−2, the dominant flux wavelength decreased (i.e., “downshifted”) to an intermediate wavelength between 20 and 60 km. A potential explanation for the rapid flux changes and the scale “downshifting” is that low-level flow can shift between “terrain following” and “envelope following” associated with trapped air in steep New Zealand valleys

    Increasing physical activity among young children from disadvantaged communities: Study protocol of a group randomised controlled effectiveness trial

    Get PDF
    Background: Participation in regular physical activity (PA) during the early years helps children achieve healthy body weight and can substantially improve motor development, bone health, psychosocial health and cognitive development. Despite common assumptions that young children are naturally active, evidence shows that they are insufficiently active for health and developmental benefits. Exploring strategies to increase physical activity in young children is a public health and research priority. Methods: Jump Start is a multi-component, multi-setting PA and gross motor skill intervention for young children aged 3–5 years in disadvantaged areas of New South Wales, Australia. The intervention will be evaluated using a two-arm, parallel group, randomised cluster trial. The Jump Start protocol was based on Social Cognitive Theory and includes five components: a structured gross motor skill lesson (Jump In); unstructured outdoor PA and gross motor skill time (Jump Out); energy breaks (Jump Up); activities connecting movement to learning experiences (Jump Through); and a home-based family component to promote PA and gross motor skill (Jump Home). Early childhood education and care centres will be demographically matched and randomised to Jump Start (intervention) or usual practice (comparison) group. The intervention group receive Jump Start professional development, program resources, monthly newsletters and ongoing intervention support. Outcomes include change in total PA (accelerometers) within centre hours, gross motor skill development (Test of Gross Motor Development-2), weight status (body mass index), bone strength (Sunlight MiniOmni Ultrasound Bone Sonometer), self-regulation (Heads-Toes-Knees-Shoulders, executive function tasks, and proxy-report Temperament and Approaches to learning scales), and educator and parent self-efficacy. Extensive quantitative and qualitative process evaluation and a cost-effectiveness evaluation will be conducted. Discussion: The Jump Start intervention is a unique program to address low levels of PA and gross motor skill proficiency, and support healthy lifestyle behaviours among young children in disadvantaged communities. If shown to be efficacious, the Jump Start approach can be expected to have implications for early childhood education and care policies and practices, and ultimately a positive effect on the health and development across the life course

    Large‐Amplitude Mountain Waves in the Mesosphere Observed on 21 June 2014 During DEEPWAVE: 1.Wave Development, Scales, Momentum Fluxes, and Environmental Sensitivity

    Get PDF
    A remarkable, large‐amplitude, mountain wave (MW) breaking event was observed on the night of 21 June 2014 by ground‐based optical instruments operated on the New Zealand South Island during the Deep Propagating Gravity Wave Experiment (DEEPWAVE). Concurrent measurements of the MW structures, amplitudes, and background environment were made using an Advanced Mesospheric Temperature Mapper, a Rayleigh Lidar, an All‐Sky Imager, and a Fabry‐Perot Interferometer. The MW event was observed primarily in the OH airglow emission layer at an altitude of ~82 km, over an ~2‐hr interval (~10:30–12:30 UT), during strong eastward winds at the OH altitude and above, which weakened with time. The MWs displayed dominant horizontal wavelengths ranging from ~40 to 70 km and temperature perturbation amplitudes as large as ~35 K. The waves were characterized by an unusual, “saw‐tooth” pattern in the larger‐scale temperature field exhibiting narrow cold phases separating much broader warm phases with increasing temperatures toward the east, indicative of strong overturning and instability development. Estimates of the momentum fluxes during this event revealed a distinct periodicity (~25 min) with three well‐defined peaks ranging from ~600 to 800 m2/s2, among the largest ever inferred at these altitudes. These results suggest that MW forcing at small horizontal scales (km) can play large roles in the momentum budget of the mesopause region when forcing and propagation conditions allow them to reach mesospheric altitudes with large amplitudes. A detailed analysis of the instability dynamics accompanying this breaking MW event is presented in a companion paper, Fritts et al. (2019, https://doi.org/10.1029/2019jd030899)

    \u27Jump start\u27 childcare-based intervention to promote physical activity in pre-schoolers: six-month findings from a cluster randomised trial

    Get PDF
    BACKGROUND: Participation in adequate levels of physical activity during the early years is important for health and development. We report the 6-month effects of an 18-month multicomponent intervention on physical activity in early childhood education and care (ECEC) settings in low-income communities. METHODS: A cluster randomised controlled trial was conducted in 43 ECEC settings in disadvantaged areas of New South Wales, Australia. Three-year-old children were recruited and assessed in the first half of 2015 with follow-up 6 months later. The intervention was guided by Social Cognitive Theory and included five components. The primary outcome was minutes per hour in total physical activity during ECEC hours measured using Actigraph accelerometers. Intention-to-treat analysis of the primary outcome was conducted using a generalized linear mixed model. RESULTS: A total of 658 children were assessed at baseline. Of these, 558 (85%) had valid accelerometer data (mean age 3.38y, 52% boys) and 508 (77%) had valid accelerometry data at 6-month follow-up. Implementation of the intervention components ranged from 38 to 72%. There were no significant intervention effects on mins/hr. spent in physical activity (adjusted difference = - 0.17 mins/hr., 95% CI (- 1.30 to 0.97), p = 0.78). A priori sub-group analyses showed a greater effect among overweight/obese children in the control group compared with the intervention group for mins/hr. of physical activity (2.35mins/hr., [0.28 to 4.43], p = 0.036). CONCLUSIONS: After six-months the Jump Start intervention had no effect on physical activity levels during ECEC. This was largely due to low levels of implementation. Increasing fidelity may result in higher levels of physical activity when outcomes are assessed at 18-months

    High-Altitude (0-100 km) Global Atmospheric Reanalysis System: Description and Application to the 2014 Austral Winter of the Deep Propagating Gravity-Wave Experiment (DEEPWAVE)

    Get PDF
    A data assimilation system (DAS) is described for global atmospheric reanalysis from 0-100 km altitude. We apply it to the 2014 austral winter of DEEPWAVE, an international field campaign focused on gravity-wave dynamics from 0-100 km, where an absence of reanalysis above 60 km inhibits research. Four experiments were performed from April-September 2014 and assessed for reanalysis skill above 50 km. A four-dimensional variational (4DVAR) run specified initial background error covariances statically. A hybrid-4DVAR (HYBRID) run formed background error covariances from an 80-member forecast ensemble blended with a static estimate. Each configuration was run at low and high horizontal resolution. In addition to operational observations below 50 km, each experiment assimilated ~105 observations of the mesosphere and lower thermosphere (MLT) every 6 h. While all MLT reanalyses show skill relative to independent wind and temperature measurements, HYBRID outperforms 4DVAR. MLT fields at 1 h resolution (6 h analysis and 1–5 h forecasts) outperform 6 h analysis alone due to a migrating semidiurnal (SW2) tide that dominates MLT dynamics and is temporally aliased in 6 h time series. MLT reanalyses reproduce observed SW2 winds and temperatures, including phase structures and 10–15 day amplitude vacillations. The 0-100 km reanalyses reveal quasi-stationary planetary waves splitting the stratopause jet in July over New Zealand, decaying from 50–80 km then reintensifying above 80 km, most likely via MLT forcing due to zonal asymmetries in stratospheric gravity-wave filtering
    corecore