2,908 research outputs found

    Approximate theoretical performance evaluation for a diverging rocket

    Get PDF
    A simplified combustion model, which is motivated by available performance studies on the diverging rocket reactor, has been used as basis for an engine performance evaluation. Comparison with conventional rocket configurations shows that an upper performance limit for the diverging reactor is comparable with performance estimates for engines using an adiabatic work cycle. Development of the diverging reactor for engine applications may, however, offer some advantages for very hot, high-energy, propellant systems

    A rapidly expanding Bose-Einstein condensate: an expanding universe in the lab

    Full text link
    We study the dynamics of a supersonically expanding ring-shaped Bose-Einstein condensate both experimentally and theoretically. The expansion redshifts long-wavelength excitations, as in an expanding universe. After expansion, energy in the radial mode leads to the production of bulk topological excitations -- solitons and vortices -- driving the production of a large number of azimuthal phonons and, at late times, causing stochastic persistent currents. These complex nonlinear dynamics, fueled by the energy stored coherently in one mode, are reminiscent of a type of "preheating" that may have taken place at the end of inflation.Comment: 12 pages, 7 figure

    Comparative study of theoretical methods for nonequilibrium quantum transport

    Full text link
    We present a detailed comparison of three different methods designed to tackle nonequilibrium quantum transport, namely the functional renormalization group (fRG), the time-dependent density matrix renormalization group (tDMRG), and the iterative summation of real-time path integrals (ISPI). For the nonequilibrium single-impurity Anderson model (including a Zeeman term at the impurity site), we demonstrate that the three methods are in quantitative agreement over a wide range of parameters at the particle-hole symmetric point as well as in the mixed-valence regime. We further compare these techniques with two quantum Monte Carlo approaches and the time-dependent numerical renormalization group method.Comment: 19 pages, 7 figures; published versio

    Hydrogen-silicon carbide interactions

    Get PDF
    A study of the thermochemistry and kinetics of hydrogen environmental attack of silicon carbide was conducted for temperatures in the range from 1100 C to 1400 C. Thermodynamic maps based on the parameters of pressure and oxygen/moisture content were constructed. With increasing moisture levels, four distinct regions of attack were identified. Each region is defined by the thermodynamically stable solid phases. The theoretically stable solid phases of Region 1 are silicon carbide and silicon. Experimental evidence is provided to support this thermodynamic prediction. Silicon carbide is the single stable solid phase in Region 2. Active attack of the silicon carbide in this region occurs by the formation of gases of SiO, CO, CH4, SiH4, and SiH. Analysis of the kinetics of reaction for Region 2 at 1300 C show the attack of the silicon carbide to be controlled by gas phase diffusion of H2O to the sample. Silicon carbide and silica are the stable phases common to Regions 3 and 4. These two regions are characterized by the passive oxidation of silicon carbide and formation of a protective silica layer

    The Last 100 Days of a Presidency: What Boards Need to Know and Do

    Get PDF
    Takeaways It is just as important for a board to plan the transition of the outgoing president as it is to plan the transition of the incoming president. Boards should help departing presidents fashion a to-do list, as well as a not-to-do list. Boards should recognize that the departure of the president can present significant procedural and emotional issues for senior staff members awaiting the arrival of the new president
    • …
    corecore