86 research outputs found

    Hypoxia-inducible factors not only regulate but also are myeloid-cell treatment targets

    Get PDF
    Hypoxia describes limited oxygen availability at the cellular level. Myeloid cells are exposed to hypoxia at various bodily sites and even contribute to hypoxia by consuming large amounts of oxygen during respiratory burst. Hypoxia-inducible factors (HIFs) are ubiquitously expressed heterodimeric transcription factors, composed of an oxygen-dependent α and a constitutive β subunit. The stability of HIF-1α and HIF-2α is regulated by oxygen-sensing prolyl-hydroxylases (PHD). HIF-1α and HIF-2α modify the innate immune response and are context dependent. We provide a historic perspective of HIF discovery, discuss the molecular components of the HIF pathway, and how HIF-dependent mechanisms modify myeloid cell functions. HIFs enable myeloid-cell adaptation to hypoxia by up-regulating anaerobic glycolysis. In addition to effects on metabolism, HIFs control chemotaxis, phagocytosis, degranulation, oxidative burst, and apoptosis. HIF-1α enables efficient infection defense by myeloid cells. HIF-2α delays inflammation resolution and decreases antitumor effects by promoting tumor-associated myeloid-cell hibernation. PHDs not only control HIF degradation, but also regulate the crosstalk between innate and adaptive immune cells thereby suppressing autoimmunity. HIF-modifying pharmacologic compounds are entering clinical practice. Current indications include renal anemia and certain cancers. Beneficial and adverse effects on myeloid cells should be considered and could possibly lead to drug repurposing for inflammatory disorders

    Hemophagocytic lymphohistiocytosis and thrombotic microangiopathy after parvovirus B19 infection and renal transplantation: a case report

    Get PDF
    BACKGROUND: Hemophagocytic lymphohistiocytosis (HLH) is a rare and life-threatening disease characterized by hyperactivation of the immune system that causes hypercytokinemia and potentially multi organ failure. HLH can occur in patients with underlying rheumatic or autoinflammatory disorders. Additionally, HLH can develop in patients during infections or malignancies without a known genetic predisposition. CASE PRESENTATION: We herein report a patient, who presented with fever, both acute kidney and liver injury, anemia, thrombocytopenia and HSV stomatitis. HLH was diagnosed based on clinical criteria and qPCR revealed an acute parvovirus B19 infection as potential underlying infectious trigger. Treatment was started with both IVIG and dexamethasone. Subsequently, kidney biopsy demonstrated TMA. CONCLUSIONS: In rare cases both HLH and aHUS can occur simultaneously in a patient as a consequence of viral infections. Insights from this unusual case might help physicians understand this complex symptom constellation

    Mononuclear Phagocyte System Depletion Blocks Interstitial Tonicity-Responsive Enhancer Binding Protein/Vascular Endothelial Growth Factor C Expression and Induces Salt-Sensitive Hypertension in Rats

    Get PDF
    We showed recently that mononuclear phagocyte system (MPS) cells provide a buffering mechanism for salt-sensitive hypertension by driving interstitial lymphangiogenesis, modulating interstitial Na(+) clearance, and increasing endothelial NO synthase protein expression in response to very high dietary salt via a tonicity-responsive enhancer binding protein/vascular endothelial growth factor C regulatory mechanism. We now tested whether isotonic saline and deoxycorticosterone acetate (DOCA)-salt treatment leads to a similar regulatory response in Sprague-Dawley rats. Male rats were fed a low-salt diet and received tap water (low-salt diet LSD), 1.0% saline (high-salt diet HSD), or DOCA+1.0% saline (DOCA-HSD). To test the regulatory role of interstitial MPS cells, we further depleted MPS cells with clodronate liposomes. HSD and DOCA-HSD led to Na(+) accumulation in the skin, MPS-driven tonicity-responsive enhancer binding protein/vascular endothelial growth factor C-mediated hyperplasia of interstitial lymph capillaries, and increased endothelial NO synthase protein expression in skin interstitium. Clodronate liposome MPS cell depletion blocked MPS infiltration in the skin interstitium, resulting in unchanged tonicity-responsive enhance binding protein/vascular endothelial growth factor C levels and absent hyperplasia of the lymph capillary network. Moreover, no increased skin endothelial NO synthase protein expression occurred in either clodronate liposome-treated HSD or DOCA-salt rats. Thus, absence of the MPS-cell regulatory response converted a salt-resistant blood-pressure state to a salt-sensitive state in HSD rats. Furthermore, salt-sensitive hypertension in DOCA-salt rats was aggravated. We conclude that MPS cells act as onsite controllers of interstitial volume and blood pressure homeostasis, providing a local regulatory salt-sensitive tonicity-responsive enhancer binding protein/vascular endothelial growth factor C-mediated mechanism in the skin to maintain normal blood pressure in states of interstitial Na(+) and Cl(-) accumulation. Failure of this physiological extrarenal regulatory mechanism leads to a salt-sensitive blood pressure response

    Daratumumab for the treatment of refractory ANCA-associated vasculitis

    Get PDF
    OBJECTIVE: Treatment-refractory antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a life-threatening condition without evidence-based treatment options. One emerging treatment option for several antibody-mediated autoimmune diseases is the anti-CD38 antibody daratumumab, which depletes autoantibody-secreting plasma cells. METHODS: We treated two patients with severe life-threatening AAV with renal and pulmonary manifestation despite induction therapy with rituximab and cyclophosphamide with four to eight doses of 1800 mg daratumumab. We followed clinical and immunological responses. RESULTS: The first patient with myeloperoxidase-ANCA-positive microscopic polyangiitis had resolution of pneumonitis and pleuritis and stabilisation of kidney function after daratumumab. The second patient with proteinase 3-ANCA-positive granulomatosis with polyangiitis, diffuse alveolar haemorrhage necessitating extracorporeal membrane oxygenation (ECMO) and acute kidney failure, requiring kidney replacement therapy, was weaned off ECMO, mechanical ventilation and dialysis and discharged home after daratumumab. Clinical improvement was paralleled by a strong reduction in serum ANCA levels as well as total IgG, indicating depletion of plasma cells. Apart from the depletion of CD38(+) natural killer cells, blood leucocyte levels were not notably influenced by daratumumab. Only mild adverse events, such as hypogammaglobulinaemia and an upper respiratory tract infection occurred. CONCLUSION: Daratumumab was safe and effective in inducing remission in two patients with severe treatment-refractory AAV, warranting prospective clinical trials to establish safety and efficacy

    Recurrent early filter clotting during continuous veno-venous hemodialysis with regional citrate anticoagulation is linked to systemic thrombin generation and heparin induced thrombocytopenia type II: a retrospective analysis

    Get PDF
    OBJECTIVE: Regional citrate anticoagulation (RCA) for continuous renal replacement therapy (CRRT) is widely used and leads to an excellent clottingfree filter survival. Despite strict adherence to protocols, in some cases recurrent early filter-clotting occurs. The aim of this observational study was to evaluate the underlying causes and the efficacy of interventions in patients with early recurrent filter-clotting during RCA. METHODS: In a retrospective analysis of a cohort of 1183 patients treated with RCA-CRRT we detected 12 patients with early filter-clotting unrelated to protocol violation or any obvious technical or medical reason. RESULTS: All patients were systemically anticoagulated with low molecular weight or unfractionated heparin for at least 24h before initiation of Continuous Veno-Venous Hemodialysis with RCA (RCA-CVVHD). During RCA, all postfilter ionized calcium concentrations were in the target range (mean 0.33±0.05 mmol/L). At the time of the first clotting event, thrombocyte counts were 168±66/ nL. After the clotting events, the systemic anticoagulation was switched to argatroban in all patients. With systemic anticoagulation using argatroban filter lifetime of RCA-CVVHD increased significantly (p<0.001) and clotting-events decreased from 0.61 to 0.10 per 24h. All patients were tested for HIT and 5/12 (42%) had a positive test for hep-PF4-antibodies. Application of argatroban significantly reduced early filter-clotting both in HIT-positive patients as well as in HIT-negative patients. At the time of the first clotting event, no patient had clinical signs of thrombosis or thromboembolism. However, during follow up a thromboembolic event occurred in three patients. CONCLUSION: In patients with recurrent early filter-clotting despite strict adherence to the citrate protocol undetected HIT or other causes of thrombin activation may be present. Therefore, patients with recurrent early filter clotting in RCA-CVVHD should be screened for HIT or other conditions that may activate thrombin. A significant improvement of filter run-time can be achieved by systemic administration of a thrombin inhibitor both in patients with and without HIT

    Disease overarching mechanisms that explain and predict outcome of patients with high cardiovascular risk: rationale and design of the Berlin Long-term Observation of vascular events (BeLOVE) study

    Get PDF
    BACKGROUND: Cardiovascular disease (CVD) is the leading cause of premature death worldwide. Effective and individualized treatment requires exact knowledge about both risk factors and risk estimation. Most evidence for risk prediction currently comes from population-based studies on first incident cardiovascular events. In contrast, little is known about the relevance of risk factors for the outcome of patients with established CVD or those who are at high risk of CVD, including patients with type 2 diabetes. In addition, most studies focus on individual diseases, whereas less is known about disease overarching risk factors and cross-over risk. AIM: The aim of BeLOVE is to improve short- and long-term prediction and mechanistic understanding of cardiovascular disease progression and outcomes in very high-risk patients, both in the acute as well as in the chronic phase, in order to provide the basis for improved, individualized management. STUDY DESIGN: BeLOVE is an observational prospective cohort study of patients of both sexes aged >18 in selected Berlin hospitals, who have a high risk of future cardiovascular events, including patients with a history of acute coronary syndrome (ACS), acute stroke (AS), acute heart failure (AHF), acute kidney injury (AKI) or type 2 diabetes with manifest target-organ damage. BeLOVE includes 2 subcohorts: The acute subcohort includes 6500 patients with ACS, AS, AHF, or AKI within 2-8 days after their qualifying event, who undergo a structured interview about medical history as well as blood sample collection. The chronic subcohort includes 6000 patients with ACS, AS, AHF, or AKI 90 days after event, and patients with type 2 diabetes (T2DM) and target-organ damage. These patients undergo a 6-8 hour deep phenotyping program, including detailed clinical phenotyping from a cardiological, neurological and metabolic perspective, questionnaires including patient-reported outcome measures (PROMs)as well as magnetic resonance imaging. Several biological samples are collected (i.e. blood, urine, saliva, stool) with blood samples collected in a fasting state, as well as after a metabolic challenge (either nutritional or cardiopulmonary exercise stress test). Ascertainment of major adverse cardiovascular events (MACE) will be performed in all patients using a combination of active and passive follow up procedures, such as on-site visits (if applicable), telephone interviews, review of medical charts, and links to local health authorities. Additional phenotyping visits are planned at 2, 5 and 10 years after inclusion into the chronic subcohort. FUTURE PERSPECTIVE: BeLOVE provides a unique opportunity to study both the short- and long-term disease course of patients at high cardiovascular risk through innovative and extensive deep phenotyping. Moreover, the unique study design provides opportunities for acute and post-acute inclusion and allows us to derive two non-nested yet overlapping sub-cohorts, tailored for upcoming research questions. Thereby, we aim to study disease overarching research questions, to understand crossover risk, and to find similarities and differences between clinical phenotypes of patients at high cardiovascular risk

    Short-chain fatty acid propionate protects from hypertensive cardiovascular damage

    Get PDF
    BACKGROUND: Arterial hypertension and its organ sequelae show characteristics of T cell mediated inflammatory diseases. Experimental anti-inflammatory therapies have been shown to ameliorate hypertensive end-organ damage. Recently, the CANTOS study targeting interleukin-1β demonstrated that anti-inflammatory therapy reduces cardiovascular risk. The gut microbiome plays pivotal role in immune homeostasis and cardiovascular health. Short-chain fatty acids (SCFA) are produced from dietary fiber by gut bacteria and affect host immune homeostasis. Here, we investigated effects of the SCFA propionate in two different mouse models of hypertensive cardiovascular damage. METHODS: To investigate the effect of SCFA on hypertensive cardiac damage and atherosclerosis, wild-type NMRI (WT) or ApoE(-/-) deficient mice received propionate (200mM) or control in the drinking water. To induce hypertension, WT mice were infused with Angiotensin (Ang)II (1.44mg/kg/d s.c.) for 14 days. To accelerate the development of atherosclerosis, ApoE(-/-) mice were infused with AngII (0.72mg/kg/d s.c.) for 28 days. Cardiac damage and atherosclerosis were assessed using histology, echocardiography, in vivo electrophysiology, immunofluorescence, and flow cytometry. Blood pressure was measured by radiotelemetry. Regulatory T cell (Treg) depletion using PC61 antibody was used to examine the mode of action of propionate. RESULTS: Propionate significantly attenuated cardiac hypertrophy, fibrosis, vascular dysfunction, and hypertension in both models. Susceptibility to cardiac ventricular arrhythmias was significantly reduced in propionate-treated AngII-infused WT mice. Aortic atherosclerotic lesion area was significantly decreased in propionate-treated ApoE(-/-). Systemic inflammation was mitigated by propionate treatment, quantified as a reduction in splenic effector memory T cell frequencies and splenic T helper 17 cells in both models, and a decrease in local cardiac immune cell infiltration in WT mice. Cardioprotective effects of propionate were abrogated in Treg-depleted AngII-infused mice, suggesting the effect is Treg-dependent. CONCLUSIONS: Our data emphasize an immune-modulatory role of SCFAs and their importance for cardiovascular health. The data suggest that lifestyle modifications leading to augmented SCFA production could be a beneficial non-pharmacological preventive strategy for patients with hypertensive cardiovascular disease

    SLC26A1 is a major determinant of sulfate homeostasis in humans

    Get PDF
    Sulfate plays a pivotal role in numerous physiological processes in the human body, including bone and cartilage health. A role of the anion transporter SLC26A1 (Sat1) for sulfate reabsorption in the kidney is supported by the observation of hyposulfatemia and hypersulfaturia in Slc26a1-knockout mice. The impact of SLC26A1 on sulfate homeostasis in humans remains to be defined. By combining clinical genetics, functional expression assays, and population exome analysis, we identify SLC26A1 as a sulfate transporter in humans and experimentally validate several loss-of-function alleles. Whole-exome sequencing from a patient presenting with painful perichondritis, hyposulfatemia, and renal sulfate wasting revealed a homozygous mutation in SLC26A1, which has not been previously described to the best of our knowledge. Whole-exome data analysis of more than 5,000 individuals confirmed that rare, putatively damaging SCL26A1 variants were significantly associated with lower plasma sulfate at the population level. Functional expression assays confirmed a substantial reduction in sulfate transport for the SLC26A1 mutation of our patient, which we consider to be novel, as well as for the additional variants detected in the population study. In conclusion, combined evidence from 3 complementary approaches supports SLC26A1 activity as a major determinant of sulfate homeostasis in humans. In view of recent evidence linking sulfate homeostasis with back pain and intervertebral disc disorder, our study identifies SLC26A1 as a potential target for modulation of musculoskeletal health

    Discordance between estimated and measured changes in plasma volume among patients with acute heart failure

    Get PDF
    AIMS: In acute heart failure (AHF), changes of venous haemoglobin (Hb) concentrations, haematocrit (Hct), and estimated plasma volume (ePV) have been proposed as surrogates of decongestion. These estimates are based on the theoretical assumptions that changes of Hb concentrations and Hct are driven by the intravascular volume status and that the intravascular Hb pool remains stable. The objective of this study was to assess the relationship of changes of measured plasma volume (mPV) with changes of Hb, Hct, and ePV in AHF. METHODS AND RESULTS: We studied 36 AHF patients, who received two sequential assessments of mPV, measured red cell volume (mRCV) and measured total blood volume (mTBV) (48 h apart), during the course of diuretic therapy using a novel visible fluorescent injectate (VFI) technique based on the indicator dilution principle. Changes of ePV were calculated based on the Kaplan–Hakim or Strauss formula. AHF patients receiving diuretics (median intravenous furosemide equivalent 160 mg/48 h) displayed a wide range of changes of mPV (−25.4% to +37.0%). Changes in mPV were not significantly correlated with changes of Hb concentration [Pearson's r (r) = −0.241, P = 0.157], Hct (r = −0.307, P = 0.069), ePVKaplan–Hakim (r = 0.228, P = 0.182), or ePVStrauss (r = 0.237, P = 0.163). In contrast to theoretical assumptions, changes of mTBV were poorly correlated with changes of Hb concentrations and some patients displayed unanticipated variability of mRCV, suggesting an unstable intravascular red cell pool. CONCLUSIONS: Changes of Hb or Hct were not reflective of directly measured changes of intravascular volume status in AHF patients. Basing clinical assessment of decongestion on changes of Hb or Hct may misguide clinical decision-making on an individual patient level
    corecore