17 research outputs found

    Selection of T cell clones expressing high-affinity public TCRs within Human cytomegalovirus-specific CD8 T cell responses.

    No full text
    Assessment of clonal diversity of T cell responses against human CMV (HCMV), a major cause of morbidity in immunodepressed patients, provides important insights into the molecular basis of T cell immunodominance, and has also clinical implications for the immunomonitoring and immunotherapy of HCMV infections. We performed an in-depth molecular and functional characterization of CD8 T cells directed against an immunodominant HLA-A2-restricted epitope derived from HCMV protein pp65 (NLV/A2) in steady state and pathological situations associated with HCMV reactivation. NLV/A2-specific T cells in healthy HCMV-seropositive donors showed limited clonal diversity and usage of a restricted set of TCR Vbeta regions. Although TCRbeta-chain junctional sequences were highly diverse, a large fraction of NLV/A2-specific T cells derived from distinct individuals showed several recurrent (so-called "public") TCR features associated in some cases with full conservation of the TCRalpha chain junctional region. A dramatic clonal focusing of NLV/A2-specific T cells was observed in situations of HCMV reactivation and/or chronic inflammation, which resulted in selection of a single clonotype displaying similar public TCR features in several patients. In most instances the NLV/A2-specific dominant clonotypes showed higher affinity for their Ag than subdominant ones, thus suggesting that TCR affinity/avidity is the primary driving force underlying repertoire focusing along chronic antigenic stimulation

    Soluble HLA-I/Peptide Monomers Mediate Antigen-Specific CD8 T Cell Activation through Passive Peptide Exchange with Cell-Bound HLA-I Molecules

    No full text
    International audienceAccumulating evidence that serum levels of soluble class I HLA molecules (sHLA-I) can, under various pathological conditions, correlate with disease stage and/or patient survival, has stimulated interest in defining whether sHLA-I can exert immunological functions. However, despite a mounting number of publications suggesting the ability of sHLA-I to affect immune effectors in vitro, the precise underlying mechanism still remains controversial. In this article, we address potential functions of both classical and nonclassical sHLA-I, using soluble recombinant HLA-I/peptide monomers, and clearly demonstrate their ability to trigger Ag-specific activation of CD8 T cells in vitro. Furthermore, we provide strong evidence that this behavior results from the passive transfer of peptides from monomers to T cell-bound HLA-I molecules, allowing for fratricide representation and activation. Hence, we proposed a unifying model of T cell activation by HLA-I/peptide monomers, reappraising the potential involvement of sHLA-I molecules in the immune response

    Staphylococcal Enterotoxin-Like Toxins U2 and V, Two New Staphylococcal Superantigens Arising from Recombination within the Enterotoxin Gene Cluster

    No full text
    To test the hypothesis that the Staphylococcus aureus enterotoxin gene cluster (egc) can generate new enterotoxin genes by recombination, we analyzed the egc locus in a broad panel of 666 clinical isolates of S. aureus. egc was present in 63% of isolates, confirming its high prevalence. The archetypal organization of the egc locus, consisting of five enterotoxin genes plus two pseudogenes, was found in 409 of 421 egc-positive strains. The egc locus was incomplete in a few strains and occasionally harbored an insertion sequence and transposase genes. These strains may represent evolutionary intermediates of the egc locus. One strain with an atypical egc locus produced two new enterotoxins, designated SElV and SElU2, generated by (i) recombination between selm and sei, producing selv, and (ii) a limited deletion in the ϕent1-ϕent2 pseudogenes, producing selu2. Recombinant SElV and SElU2 had superantigen activity, as they specifically activated the T-cell families Vβ 6, Vβ 18, and Vβ 21 (SElV) and Vβ 13.2 and Vβ 14 (SElU2). Immunoscope analysis showed a Gaussian CDR3 size distribution of T-cell receptor Vβ chain junctional transcripts of expanded Vβ subsets in toxin-stimulated cultures, reflecting a high level of polyclonality. These data show that egc is indeed capable of generating new superantigen genes through recombination

    A novel and efficient approach to high-throughput production of HLA-E/peptide monomer for T-cell epitope screening

    No full text
    International audienceOver the past two decades, there has been a great interest in the study of HLA-E-restricted αβ T cells during bacterial and viral infections, including recently SARS-CoV-2 infection. Phenotyping of these specific HLA-E-restricted T cells requires new tools such as tetramers for rapid cell staining or sorting, as well as for the identification of new peptides capable to bind to the HLA-E pocket. To this aim, we have developed an optimal photosensitive peptide to generate stable HLA-E/pUV complexes allowing high-throughput production of new HLA-E/peptide complexes by peptide exchange. We characterized the UV exchange by ELISA and improved the peptide exchange readout using size exclusion chromatography. This novel approach for complex quantification is indeed very important to perform tetramerization of MHC/peptide complexes with the high quality required for detection of specific T cells. Our approach allows the rapid screening of peptides capable of binding to the non-classical human HLA-E allele, paving the way for the development of new therapeutic approaches based on the detection of HLA-E-restricted T cells

    Cross-Reactive Donor-Specific CD8+ Tregs Efficiently Prevent Transplant Rejection

    Get PDF
    International audienceTo reduce the use of non-specific immunosuppressive drugs detrimental to transplant patient health, therapies in development aim to achieve antigen-specific tolerance by promoting antigen-specific regulatory T cells (Tregs). However, identification of the natural antigens recognized by Tregs and the contribution of their dominance in transplantation has been challenging. We identify epitopes derived from distinct major histocompatibility complex (MHC) class II molecules, sharing a 7-amino acid consensus sequence positioned in a central mobile section in complex with MHC class I, recognized by cross-reactive CD8+ Tregs, enriched in the graft. Antigen-specific CD8+ Tregs can be induced in vivo with a 16-amino acid-long peptide to trigger transplant tolerance. Peptides derived from human HLA class II molecules, harboring the rat consensus sequence, also activate and expand human CD8+ Tregs, suggesting its potential in human transplantation. Altogether, this work should facilitate the development of therapies with peptide epitopes for transplantation and improve our understanding of CD8+ Treg recognition
    corecore