639 research outputs found

    Interleukin-17 Expression in the Barrett’s Metaplasia-Dysplasia-Adenocarcinoma Sequence

    Get PDF
    Original Research ArticleIntroduction. This pilot study evaluated the expression of the proinflammatory cytokine IL-17 along the Barrett’s metaplasia-dysplasia-adenocarcinoma sequence by establishing the expression levels of IL-17 in columnar epithelium, intestinal metaplastic cells, and dysplastic/glandular neoplastic cells. Immunohistochemical techniques were used to examine the accumulation of the proinflammatory cytokine IL-17 in forty () formalin-fixed, paraffin-embedded oesophageal archived specimens across a range of endoscopic diagnostic categories, and a highly significant difference was found, where , in IL-17 expression (Kruskall Wallis and Mann-Whitney ) between all the cell types examined. There was also a strong positive correlation (Spearman's rank correlation) between disease progression and IL-17 expression (, , ), IL-17 expression was absent or absent/weak in columnar epithelium, weak to moderate in columnar metaplastic cells, and moderate to strong in dysplastic/neoplastic cells, which demonstrated that the elevation of IL-17 expression occurs in the progression of the disease. Understanding the differential expression of IL-17 between benign and malignant tissue potentially has a significant diagnostic, prognostic, and therapeutic value. Ultimately, this selective biomarker may be employed in routine clinical practice for the screening of oesophageal adenocarcinoma.The authors thankfully acknowledge the University of Chester for their financial support

    Phases of two coupled Luttinger liquids

    Full text link
    A model of two interacting one--dimensional fermion systems (``Luttinger liquids'') coupled by single--particle hopping is investigated. Bosonization allows a number of exact statements to be made. In particular, for forward scattering only, the model contains two massless boson sectors and an Ising type critical sector. For general interactions, there is a spin excitation gap and either s-- or d--type pairing fluctuations dominate. It is shown that the same behavior is also found for strong interactions. A possible scenario for the crossover to a Fermi liquid in a many chain system is discussed.Comment: revised version, some changes, 11 pages, no figures, RexTeX3.

    Dynamical Properties of Two Coupled Hubbard Chains at Half-filling

    Full text link
    Using grand canonical Quantum Monte Carlo (QMC) simulations combined with Maximum Entropy analytic continuation, as well as analytical methods, we examine the one- and two-particle dynamical properties of the Hubbard model on two coupled chains at half-filling. The one-particle spectral weight function, A(k,ω)A({\bf k},\omega), undergoes a qualitative change with interchain hopping t⊥t_\perp associated with a transition from a four-band insulator to a two-band insulator. A simple analytical model based on the propagation of exact rung singlet states gives a good description of the features at large t⊥t_\perp. For smaller t⊥t_\perp, A(k,ω)A({\bf k}, \omega) is similar to that of the one-dimensional model, with a coherent band of width the effective antiferromagnetic exchange JJ reasonably well-described by renormalized spin-wave theory. The coherent band rides on a broad background of width several times the parallel hopping integral tt, an incoherent structure similar to that found in calculations on both the one- and two-dimensional models. We also present QMC results for the two-particle spin and charge excitation spectra, and relate their behavior to the rung singlet picture for large t⊥t_\perp and to the results of spin-wave theory for small t⊥t_\perp.Comment: 9 pages + 10 postscript figures, submitted to Phys.Rev.B, revised version with isotropic t_perp=t data include

    The Mid-Infrared Instrument for the James Webb Space Telescope, VIII: The MIRI Focal Plane System

    Get PDF
    We describe the layout and unique features of the focal plane system for MIRI. We begin with the detector array and its readout integrated circuit (combining the amplifier unit cells and the multiplexer), the electronics, and the steps by which the data collection is controlled and the output signals are digitized and delivered to the JWST spacecraft electronics system. We then discuss the operation of this MIRI data system, including detector readout patterns, operation of subarrays, and data formats. Finally, we summarize the performance of the system, including remaining anomalies that need to be corrected in the data pipeline

    Excitation Spectrum and Superexchange Pathways in the Spin Dimer VODPO_4 . 1/2 D_2O

    Full text link
    Magnetic excitations have been investigated in the spin dimer material VODPO_4 \cdot 1/2 D_2O using inelastic neutron scattering. A dispersionless magnetic mode was observed at an energy of 7.81(4) meV. The wavevector dependence of the scattering intensityfrom this mode is consistent with the excitation of isolated V^{4+} spin dimers with a V-V separation of 4.43(7) \AA. This result is unexpected since the V-V pair previously thought to constitute themagnetic dimer has a separation of 3.09 \AA. We identify an alternative V-V pair as the likely magnetic dimer, which involves superexchange pathways through a covalently bonded PO_4 group. This surprising result casts doubt on the interpretation of (VO)_2P_2O_7 as a spin ladder.Comment: 4 pages, 4 postscript figures - identical to previous paper but figure 2 and 3 hopefully more compatible .p

    Field dependent thermodynamics and Quantum Critical Phenomena in the dimerized spin system Cu2(C5H12N2)2Cl4

    Full text link
    Experimental data for the uniform susceptibility, magnetization and specific heat for the material Cu2(C5H12N2)2Cl4 (abbreviated CuHpCl) as a function of temperature and external field are compared with those of three different dimerized spin models: alternating spin-chains, spin-ladders and the bilayer Heisenberg model. It is shown that because this material consists of weakly coupled spin-dimers, much of the data is insensitive to how the dimers are coupled together and what the effective dimensionality of the system is. When such a system is tuned to the quantum critical point by application of a field, the dimensionality shows up in the power-law dependences of thermodynamic quantities on temperature. We discuss the temperature window for such a quantum critical behavior in CuHpCl.Comment: Revtex, 5 pages, 4 figures (postscript

    Dynamical Spin Response Functions for Heisenberg Ladders

    Full text link
    We present the results of a numerical study of the 2 by L spin 1/2 Heisenberg ladder. Ground state energies and the singlet-triplet energy gaps for L = (4-14) and equal rung and leg interaction strengths were obtained in a Lanczos calculation and checked against earlier calculations by Barnes et al. (even L up to 12). A related moments technique is then employed to evaluate the dynamical spin response for L=12 and a range of rung to leg interaction strength ratios (0 - 5). We comment on two issues, the need for reorthogonalization and the rate of convergence, that affect the numerical utility of the moments treatment of response functions.Comment: Revtex, 3 figure

    Weak Coupling Phase Diagram of the Two Chain Hubbard Model

    Full text link
    We present a general method for determining the phase diagram of systems of a finite number of one dimensional Hubbard--like systems coupled by single--particle hopping with weak interactions. The technique is illustrated by detailed calculations for the two--chain Hubbard model, providing the first controlled results for arbitrary doping and inter-chain hopping. Of nine possible states which could occur in such a spin--1/21/2 ladder, we find seven at weak coupling. We discuss the conditions under which the model can be regarded as a one--dimensional analog of a superconductor.Comment: 5 pages, self-unpacking uuencoded compressed postscript file. Also available on the WWW at http://rheims.itp.ucsb.edu/~balents/index.htm

    Nuclear spin relaxation rates in two-leg spin ladders

    Full text link
    Using the transfer-matrix DMRG method, we study the nuclear spin relaxation rate 1/T_1 in the two-leg s=1/2 ladder as function of the inter-chain (J_{\perp}) and intra-chain (J_{|}) couplings. In particular, we separate the q_y=0 and \pi contributions and show that the later contribute significantly to the copper relaxation rate ^{63}(1/T_1) in the experimentally relevant coupling and temperature range. We compare our results to both theoretical predictions and experimental measures on ladder materials.Comment: Few modifications from the previous version 4 pages, 5 figures, accepted for publication in PR
    • …
    corecore