4 research outputs found

    The vertical variability of black carbon observed in the atmospheric boundary layer during DACCIWA

    Get PDF
    This study underlines the important role of the transported black carbon (BC) mass concentration in the West African monsoon (WAM) area. BC was measured with a micro-aethalometer integrated in the payload bay of the unmanned research aircraft ALADINA (Application of Light-weight Aircraft for Detecting IN situ Aerosol). As part of the DACCIWA (Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa) project, 53 measurement flights were carried out at SavĂš, Benin, on 2–16 July 2016. A high variability of BC (1.79 to 2.42±0.31 ”g m−3) was calculated along 155 vertical profiles that were performed below cloud base in the atmospheric boundary layer (ABL). In contrast to initial expectations of primary emissions, the vertical distribution of BC was mainly influenced by the stratification of the ABL during the WAM season. The article focuses on an event (14 and 15 July 2016) which showed distinct layers of BC in the lowermost 900 m above ground level (a.g.l.). Low concentrations of NOx and CO were sampled at the SavĂš supersite near the aircraft measurements and suggested a marginal impact of local sources during the case study. The lack of primary BC emissions was verified by a comparison of the measured BC with the model COSMO-ART (Consortium for Small-scale Modelling–Aerosols and Reactive Trace gases) that was applied for the field campaign period. The modelled vertical profiles of BC led to the assumption that the measured BC was already altered, as the size was mainly dominated by the accumulation mode. Further, calculated vertical transects of wind speed and BC presume that the observed BC layer was transported from the south with maritime inflow but was mixed vertically after the onset of a nocturnal low-level jet at the measurement site. This report contributes to the scope of DACCIWA by linking airborne BC data with ground observations and a model, and it illustrates the importance of a more profound understanding of the interaction between BC and the ABL in the WAM region

    Entwicklung eines ATFM-Slot-Vorhersagemodells fĂŒr die Flugplanung auf der Basis von Machine-Learning Algorithmen

    No full text
    Im europĂ€ischen Luftraum werden bei KapazitĂ€tsproblemen an FlughĂ€fen oder LuftrĂ€umen Maßnahmen zur Verkehrsflussregelung umgesetzt. Hierbei handelt es sich vor allem um regulierte Startzeiten, sogenannte „Air Traffic Flow Management“ (ATFM)-Slots. Diese stellen ein großes Problem fĂŒr Flugbetriebe dar. So waren im Jahr 2019 mehr als 12% aller FlĂŒge im europĂ€ischen Luftraum auf Grund von ATFM-Slots verspĂ€tet, was eine erhebliche Kostenbelastung fĂŒr Fluglinien darstellt. Nach der fĂŒr die Luftfahrt verheerenden Corona-Pandemie und den damit verbundenen Einsparungsmaßnahmen wird es fĂŒr die einzelnen Airlines noch wichtiger sein, effizient zu steuern und operative Kostenbelastungen zu minimieren. Im Rahmen des hier vorgestellten Projektes, welches im Zuge einer Masterarbeit an der TU Braunschweig unter fachlicher Begleitung des DLR Instituts fĂŒr FlugfĂŒhrung realisiert wurde, wird ein Vorhersagemodell fĂŒr das Auftreten von ATFM-Slots fĂŒr den Flugbetrieb von Austrian Airlines entwickelt. Dieses Modell erlernt mithilfe von modernen Machine-Learning Methoden historische Muster fĂŒr das Eintreten von ATFM-Slots. FĂŒr jeden Flug wird die Wahrscheinlichkeit fĂŒr das Eintreten eines solchen Slots beginnend 24 Stunden vor dem jeweiligen Flugereignis berechnet. Die Vorhersagen werden mit den aktuellen Wetterprognosen und Flugbewegungen stĂŒndlich aktualisiert, sodass eine Anpassung an die aktuellen Gegebenheiten möglich ist. Dies ermöglicht der Flugplanung sowohl frĂŒhzeitig zu agieren, als auch kurzfristig Maßnahmen einzuleiten, um Kostenbelastungen zu vermeiden. Als weitere UnterstĂŒtzung gibt das Tool Auskunft ĂŒber die LuftrĂ€ume, die am ehesten einen ATFM-Slot entlang der jeweiligen Route auslösen. Die DatensĂ€tze, die das Modell verwendet, werden beschrieben und ihre Relevanz wird erlĂ€utert. Hierzu gehören im Wesentlichen Wetterinformationen, sowie Daten aus dem Flugbetrieb der Austrian Airlines und von Eurocontrol. DarĂŒber hinaus wird der Klassifikations-Algorithmus beschrieben, auf welchem das Machine-Learning Modell beruht. Programmiert wurde der Algorithmus mit der Data-Science Sprache „Python“. Vor allem wird detailliert darauf eingegangen, wie das Tool fĂŒr die Flugplanung genutzt werden kann. HierfĂŒr wird ein Konzept fĂŒr eine grafische BenutzeroberflĂ€che vorgestellt. Zudem werden Weiterentwicklungsmöglichkeiten und EinschrĂ€nkungen des Vorhersagetools erlĂ€utert

    The vertical variability of black carbon observed in the atmospheric boundary layer during DACCIWA

    No full text
    This study underlines the important role of the transported black carbon (BC) mass concentration in the West African monsoon (WAM) area. BC was measured with a micro-aethalometer integrated in the payload bay of the unmanned research aircraft ALADINA (Application of Light-weight Aircraft for Detecting IN situ Aerosol). As part of the DACCIWA (Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa) project, 53 measurement flights were carried out at SavĂš, Benin, on 2–16 July 2016. A high variability of BC (1.79 to 2.42±0.31 ”g m−3) was calculated along 155 vertical profiles that were performed below cloud base in the atmospheric boundary layer (ABL). In contrast to initial expectations of primary emissions, the vertical distribution of BC was mainly influenced by the stratification of the ABL during the WAM season. The article focuses on an event (14 and 15 July 2016) which showed distinct layers of BC in the lowermost 900 m above ground level (a.g.l.). Low concentrations of NOx and CO were sampled at the SavĂš supersite near the aircraft measurements and suggested a marginal impact of local sources during the case study. The lack of primary BC emissions was verified by a comparison of the measured BC with the model COSMO-ART (Consortium for Small-scale Modelling–Aerosols and Reactive Trace gases) that was applied for the field campaign period. The modelled vertical profiles of BC led to the assumption that the measured BC was already altered, as the size was mainly dominated by the accumulation mode. Further, calculated vertical transects of wind speed and BC presume that the observed BC layer was transported from the south with maritime inflow but was mixed vertically after the onset of a nocturnal low-level jet at the measurement site. This report contributes to the scope of DACCIWA by linking airborne BC data with ground observations and a model, and it illustrates the importance of a more profound understanding of the interaction between BC and the ABL in the WAM region
    corecore