74 research outputs found

    Metabolite profiling and pharmacokinetic evaluation of hydrocortisone in a perfused 3D human liver bioreactor

    Get PDF
    Endotoxin lipopolysaccharide (LPS) is known to cause liver injury primarily involving inflammatory cells such as Kupffer cells, but few in vitro culture models are applicable for investigation of inflammatory effects on drug metabolism. We have developed a 3D human microphysiological hepatocyte-Kupffer-cell coculture system and evaluated the anti-inflammatory effect of glucocorticoids on liver cultures. LPS was introduced to the cultures to elicit an inflammatory response and assessed by the release of pro-inflammatory cytokines, IL6 and TNFα. A sensitive and specific RP-UHPLC-QTOF-MS method was used to evaluate hydrocortisone disappearance and metabolism at near physiological levels. For this, the systems were dosed with 100 nM hydrocortisone and circulated for two days; hydrocortisone was depleted to approximately 30 nM, with first-order kinetics. Phase I metabolites, including tetrahydrocortisone and dihydrocortisol, accounted for 8-10 % of the loss, and 45-52 % was phase II metabolites, including glucuronides of tetrahydrocortisol and tetrahydrocortisone. Pharmacokinetic parameters, i.e., half-life (t1/2), rate of elimination (kel), clearance (CL), and area under the curve (AUC), were 23.03 h, 0.03 h-1, 6.6x10-5 L. h-1 and 1.03 mg/L*h respectively. The ability of the bioreactor to predict the in vivo clearance of hydrocortisone was characterized and the obtained intrinsic clearance values correlated with human data. This system offers a physiologically-relevant tool for investigating hepatic function in an inflamed liver. Endotoxin lipopolysaccharide (LPS) is known to cause liver injury primarily involving inflammatory cells such as Kupffer cells, but few in vitro culture models are applicable for investigation of inflammatory effects on drug metabolism. We have developed a 3D human microphysiological hepatocyte-Kupffer-cell coculture system and evaluated the anti-inflammatory effect of glucocorticoids on liver cultures. LPS was introduced to the cultures to elicit an inflammatory response and assessed by the release of pro-inflammatory cytokines, IL6 and TNFα. A sensitive and specific RP-UHPLC-QTOF-MS method was used to evaluate hydrocortisone disappearance and metabolism at near physiological levels. For this, the systems were dosed with 100 nM hydrocortisone and circulated for two days; hydrocortisone was depleted to approximately 30 nM, with first-order kinetics. Phase I metabolites, including tetrahydrocortisone and dihydrocortisol, accounted for 8-10 % of the loss, and 45-52 % was phase II metabolites, including glucuronides of tetrahydrocortisol and tetrahydrocortisone. Pharmacokinetic parameters, i.e., half-life (t[subscript 1/2]), rate of elimination (k[subscript el]), clearance (CL), and area under the curve (AUC), were 23.03 h, 0.03 h[superscript -1], 6.6x10[superscript -5] L. h-1 and 1.03 mg/L*h respectively. The ability of the bioreactor to predict the in vivo clearance of hydrocortisone was characterized and the obtained intrinsic clearance values correlated with human data. This system offers a physiologically-relevant tool for investigating hepatic function in an inflamed liver.United States. Defense Advanced Research Projects Agency (DARPA-BAA-11-73 Microphysiological Systems W911NF-12-2-0039)National Institutes of Health (U.S.) (5-UH2-TR000496)Massachusetts Institute of Technology. Center for Environmental Health Sciences (P30-ES002109

    CRISPR transcriptional repression devices and layered circuits in mammalian cells

    Get PDF
    A key obstacle to creating sophisticated genetic circuits has been the lack of scalable device libraries. Here we present a modular transcriptional repression architecture based on clustered regularly interspaced palindromic repeats (CRISPR) system and examine approaches for regulated expression of guide RNAs in human cells. Subsequently we demonstrate that CRISPR regulatory devices can be layered to create functional cascaded circuits, which provide a valuable toolbox for engineering purposes.National Institutes of Health (U.S.) (Grant 5R01CA155320-04)National Institutes of Health (U.S.) (Grant P50 GM098792)Korea (South). Ministry of Science, Information and Communication Technolgy. Intelligent Synthetic Biology Center of Global Frontier Project (2013M3A6A8073557

    Cas9 gRNA engineering for genome editing, activation and repression

    Get PDF
    We demonstrate that by altering the length of Cas9-associated guide RNA(gRNA) we were able to control Cas9 nuclease activity and simultaneously perform genome editing and transcriptional regulation with a single Cas9 protein. We exploited these principles to engineer mammalian synthetic circuits with combined transcriptional regulation and kill functions governed by a single multifunctional Cas9 protein.National Human Genome Research Institute (U.S.) (P50 HG005550)United States. Department of Energy (DE-FG02-02ER63445)Wyss Institute for Biologically Inspired EngineeringUnited States. Army Research Office (DARPA W911NF-11-2-0054)National Science Foundation (U.S.)United States. National Institutes of Health (5R01CA155320-04)United States. National Institutes of Health (P50 GM098792)National Cancer Institute (U.S.) (5T32CA009216-34)Massachusetts Institute of Technology. Department of Biological EngineeringHarvard Medical School. Department of GeneticsDefense Threat Reduction Agency (DTRA) (HDTRA1-14-1-0006

    Up-regulation of matrix metallopeptidase 12 in motor neurons undergoing synaptic stripping

    No full text
    Axotomy of the rodent facial nerve represents a well-established model of synaptic plasticity. Post-traumatic “synaptic stripping” was originally discovered in this system. We report upregulation of matrix metalloproteinase MMP12 in regenerating motor neurons of the mouse and rat facial nucleus. Matrix metalloproteinases (matrix metallopeptidases, MMPs) are zinc-binding proteases capable of degrading components of the extracellular matrix and of regulating extracellular signaling networks including within synapses. MMP12 protein expression in facial motor neurons was enhanced following axotomy and peaked at day 3 after the operation. The peak of neuronal MMP12 expression preceded the peak of experimentally induced synaptic plasticity. At the same time, MMP12 redistributed intracellularly and became predominantly localized beneath the neuronal somatic cytoplasmic membrane. Both findings point to a role of MMP12 in the neuronal initiation of the synaptic stripping process. MMP12 is the first candidate molecule for such a trigger function and has potential as a therapeutic target. Moreover, since statins have been shown to increase the expression of MMP12, interference with synaptic stability may represent one mechanism by which these widely used drugs exert their side effects on higher CNS functions. © 2014 by Elsevier Ltd

    Early glucose abnormalities are associated with pulmonary inflammation in young children with cystic fibrosis

    No full text
    Background: Children with CF are insulin deficient from infancy but very little is known about the impact of glucose abnormalities in early life. We aimed to identify and describe interstitial glucose levels in CF children 11.1 mmol/L in 39% of participants. The percentage neutrophil count on BAL was positively correlated with elevated SG (peak SG rs = 0.48, p = .044) and with glucose variability (SG standard deviation r = 0.62, β = 38.5, p = .006). BAL IL-8 level was significantly correlated with all measures of CGM hyperglycemia including % time > 7.8 mmol/L (p = .008) and standard deviation (p 7.8 mmol/L glucose (16% versus 3%, p = .015). Conclusion: Children with CF frequently demonstrate elevated SG levels before age 6 years, which are associated with increased pulmonary inflammation and Pseudomonas aeruginosa infection. Transient SG elevations into the diabetic range (≥11.1 mmol/L) were identified in children from 1 year of age

    Exosomal microRNA signatures in multiple sclerosis reflect disease status

    Full text link
    Multiple Sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). There is currently no single definitive test for MS. Circulating exosomes represent promising candidate biomarkers for a host of human diseases. Exosomes contain RNA, DNA, and proteins, can cross the blood-brain barrier, and are secreted from almost all cell types including cells of the CNS. We hypothesized that serum exosomal miRNAs could present a useful blood-based assay for MS disease detection and monitoring. Exosome-associated microRNAs in serum samples from MS patients (n = 25) and matched healthy controls (n = 11) were profiled using small RNA next generation sequencing. We identified differentially expressed exosomal miRNAs in both relapsing-remitting MS (RRMS) (miR-15b-5p, miR-451a, miR-30b-5p, miR-342-3p) and progressive MS patient sera (miR-127-3p, miR-370-3p, miR-409-3p, miR-432-5p) in relation to controls. Critically, we identified a group of nine miRNAs (miR-15b-5p, miR-23a-3p, miR-223-3p, miR-374a-5p, miR-30b-5p, miR-433-3p, miR-485-3p, miR-342-3p, miR-432-5p) that distinguished relapsing-remitting from progressive disease. Eight out of nine miRNAs were validated in an independent group (n = 11) of progressive MS cases. This is the first demonstration that microRNAs associated with circulating exosomes are informative biomarkers not only for the diagnosis of MS, but in predicting disease subtype with a high degree of accuracy

    TLR4-Dependent Secretion by Hepatic Stellate Cells of the Neutrophil-Chemoattractant CXCL1 Mediates Liver Response to Gut Microbiota

    No full text
    Background & Aims The gut microbiota significantly influences hepatic immunity. Little is known on the precise mechanism by which liver cells mediate recognition of gut microbes at steady state. Here we tested the hypothesis that a specific liver cell population was the sensor and we aimed at deciphering the mechanism by which the activation of TLR4 pathway would mediate liver response to gut microbiota. Methods Using microarrays, we compared total liver gene expression in WT versus TLR4 deficient mice. We performed in situ localization of the major candidate protein, CXCL1. With an innovative technique based on cell sorting, we harvested enriched fractions of KCs, LSECs and HSCs from the same liver. The cytokine secretion profile was quantified in response to low levels of LPS (1ng/mL). Chemotactic activity of stellate cell-derived CXCL1 was assayed in vitro on neutrophils upon TLR4 activation. Results TLR4 deficient liver had reduced levels of one unique chemokine, CXCL1 and subsequent decreased of neutrophil counts. Depletion of gut microbiota mimicked TLR4 deficient phenotype, i.e., decreased neutrophils counts in the liver. All liver cells were responsive to low levels of LPS, but hepatic stellate cells were the major source of chemotactic levels of CXCL1. Neutrophil migration towards secretory hepatic stellate cells required the TLR4 dependent secretion of CXCL1. Conclusions Showing the specific activation of TLR4 and the secretion of one major functional chemokine— CXCL1, the homolog of human IL-8-, we elucidate a new mechanism in which Hepatic Stellate Cells play a central role in the recognition of gut microbes by the liver at steady state.National Institute of Allergy and Infectious Diseases (U.S.) (Grant #1R01AI072049
    • …
    corecore