132 research outputs found

    COUNTERVAILING VASCULAR EFFECTS OF ROSIGLITAZONE IN HIGH CARDIOVASCULAR RISK MICE: ROLE OF OXIDATIVE STRESS AND PRMT-1.

    Get PDF
    In the present study, we tested the hypothesis that the PPARgamma (peroxisome-proliferator-activated receptor gamma) activator rosiglitazone improves vascular structure and function in aged hyperhomocysteinaemic MTHFR (methylene tetrahydrofolate reductase) gene heterozygous knockout (mthfr+/-) mice fed a HCD (high-cholesterol diet), a model of high cardiovascular risk. One-year-old mthfr+/- mice were fed or not HCD (6 mg x kg-1 of body weight x day-1) and treated or not with rosiglitazone (20 mg x kg-1 of body weight x day-1) for 90 days and compared with wild-type mice. Endothelium-dependent relaxation of carotid arteries was significantly impaired (-40%) only in rosiglitazone-treated HCD-fed mthfr+/- mice. Carotid M/L (media-to-lumen ratio) and CSA (cross-sectional area) were increased (2-fold) in mthfr+/- mice fed or not HCD compared with wild-type mice (P<0.05). Rosiglitazone reduced M/L and CSA only in mthfr+/- mice fed a normal diet. Superoxide production was increased in mthfr+/- mice fed HCD treated or not with rosiglitazone, whereas plasma nitrite was decreased by rosiglitazone in mice fed or not HCD. PRMT-1 (protein arginine methyltransferase-1), involved in synthesis of the NO (nitric oxide) synthase inhibitor ADMA (asymmetric omega-NG,NG-dimethylarginine), and ADMA were increased only in rosiglitazone-treated HCD-fed mthfr+/- mice. Rosiglitazone had both beneficial and deleterious vascular effects in this animal model of high cardiovascular risk: it prevented carotid remodelling, but impaired endothelial function in part through enhanced oxidative stress and increased ADMA production in mice at high cardiovascular risk

    Community seismic network and localized earthquake situational awareness

    Get PDF
    Community-hosted seismic networks are a solution to the need for large numbers of sensors to operate over a seismically active region in order to accurately measure the size and location of an earthquake, assess resulting damage, and provide alerts. The Community Seismic Network is one such strong-motion network, currently comprising hundreds of elements located in California. It consists of low-cost, three-component, MEMS accelerometers capable of recording accelerations up to twice the level of gravity. The primary product of the network is to produce measurements of shaking of the ground and multiple locations of every upper floor in buildings, in the seconds during and following a major earthquake. Each sensor uses a small, dedicated ARM processor computer running Linux, and analyzes time series data in real time at hundreds of samples per second. The network reports on shaking parameters that indicate intensity of the structural response levels such as maximum floor acceleration and velocity, displacement of a floor in a building, as well as data products that depend on the response time histories. To do this, Cloud computing has been expanded through the use of statically defined subsets of sensors called cloudlets. These are smaller subsets of similar sensors that carry out customized calculations for those locations. The measurements are reported as rapidly as possible following an earthquake so that they may be incorporated into structural diagnosis and prognosis applications that can be used by first responders to prioritize their initial disaster management efforts. The cloudlet displays are customized for specific buildings and they show in real time: instantaneous displacement, inter-story drift, and resonant frequency and mode shapes using system identification software tools. The real-time display products are useful for decision-making about whether the potential for damage exists, what level of damage may have occurred and where, and whether total business disruption is necessary. City-wide dense monitoring makes it possible for emergency response managers to prioritize the target locations requiring first response on a block-by-block scale based on reports of shaking intensity

    Community seismic network and localized earthquake situational awareness

    Get PDF
    Community-hosted seismic networks are a solution to the need for large numbers of sensors to operate over a seismically active region in order to accurately measure the size and location of an earthquake, assess resulting damage, and provide alerts. The Community Seismic Network is one such strong-motion network, currently comprising hundreds of elements located in California. It consists of low-cost, three-component, MEMS accelerometers capable of recording accelerations up to twice the level of gravity. The primary product of the network is to produce measurements of shaking of the ground and multiple locations of every upper floor in buildings, in the seconds during and following a major earthquake. Each sensor uses a small, dedicated ARM processor computer running Linux, and analyzes time series data in real time at hundreds of samples per second. The network reports on shaking parameters that indicate intensity of the structural response levels such as maximum floor acceleration and velocity, displacement of a floor in a building, as well as data products that depend on the response time histories. To do this, Cloud computing has been expanded through the use of statically defined subsets of sensors called cloudlets. These are smaller subsets of similar sensors that carry out customized calculations for those locations. The measurements are reported as rapidly as possible following an earthquake so that they may be incorporated into structural diagnosis and prognosis applications that can be used by first responders to prioritize their initial disaster management efforts. The cloudlet displays are customized for specific buildings and they show in real time: instantaneous displacement, inter-story drift, and resonant frequency and mode shapes using system identification software tools. The real-time display products are useful for decision-making about whether the potential for damage exists, what level of damage may have occurred and where, and whether total business disruption is necessary. City-wide dense monitoring makes it possible for emergency response managers to prioritize the target locations requiring first response on a block-by-block scale based on reports of shaking intensity

    Human adipose stem cells cell sheet constructs impact epidermal morphogenesis in full-thickness excisional wounds

    Get PDF
    Among the wide range of strategies to target skin repair/regeneration, tissue engineering (TE) with stem cells at the forefront, remains as the most promising route. Cell sheet (CS) engineering is herein proposed, taking advantage of particular cell-cell and cell-extracellular matrix (ECM) interactions and subsequent cellular milieu, to create 3D TE constructs to promote full-thickness skin wound regeneration. Human adipose derived stem cells (hASCs) CS were obtained within five days using both thermoresponsive and standard cell culture surfaces. hASCs-based constructs were then built by superimposing three CS and transplanted into full-thickness excisional mice skin wounds with delayed healing. Constructs obtained using thermoresponsive surfaces were more stable than the ones from standard cell culture surfaces due to the natural adhesive character of the respective CS. Both CS-generating strategies lead to prolonged hASCs engraftment, although no transdifferentiation phenomena were observed. Moreover, our findings suggest that the transplanted hASCs might be promoting neotissue vascularization and extensively influencing epidermal morphogenesis, mainly through paracrine actions with the resident cells. The thicker epidermis, with a higher degree of maturation characterized by the presence of rete ridges-like structures, as well as a significant number of hair follicles observed after transplantation of the constructs combining the CS obtained from the thermoresponsive surfaces, reinforced the assumptions of the influence of the transplanted hASCs and the importance of the higher stability of these constructs promoted by cohesive cell-cell and cell-ECM interactions. Overall, this study confirmed the potential of hASCs CS-based constructs to treat full-thickness excisional skin wounds and that their fabrication conditions impact different aspects of skin regeneration, such as neovascularisation, but mainly epidermal morphogenesis.We would like to thank Hospital da Prelada (Porto), in particular, to Dr. Paulo Costa for the lipoaspirates collection and for financial support by Skingineering (PTDC/SAU-OSM/099422/2008), Portuguese Foundation for Science and Technology (FCT) funded project. The research leading to these results has also received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. REGPOT-CT2012-316331-POLARIS

    Acute radiation syndrome caused by accidental radiation exposure - therapeutic principles

    Get PDF
    Fortunately radiation accidents are infrequent occurrences, but since they have the potential of large scale events like the nuclear accidents of Chernobyl and Fukushima, preparatory planning of the medical management of radiation accident victims is very important. Radiation accidents can result in different types of radiation exposure for which the diagnostic and therapeutic measures, as well as the outcomes, differ. The clinical course of acute radiation syndrome depends on the absorbed radiation dose and its distribution. Multi-organ-involvement and multi-organ-failure need be taken into account. The most vulnerable organ system to radiation exposure is the hematopoietic system. In addition to hematopoietic syndrome, radiation induced damage to the skin plays an important role in diagnostics and the treatment of radiation accident victims. The most important therapeutic principles with special reference to hematopoietic syndrome and cutaneous radiation syndrome are reviewed

    Tyrosine Nitration of PA700 Links Proteasome Activation to Endothelial Dysfunction in Mouse Models with Cardiovascular Risk Factors

    Get PDF
    Oxidative stress is believed to cause endothelial dysfunction, an early event and a hallmark in cardiovascular diseases (CVD) including hypertension, diabetes, and dyslipidemia. However, the targets for oxidative stress-mediated endothelial dysfunction in CVD have not been completely elucidated. Here we report that 26S proteasome activation by peroxynitrite (ONOO−) is a common pathway for endothelial dysfunction in mouse models of diabetes, hypertension, and dyslipidemia. Endothelial function, assayed by acetylcholine-induced vasorelaxation, was impaired in parallel with significantly increased 26S proteasome activity in aortic homogenates from streptozotocin (STZ)-induced type I diabetic mice, angiotensin-infused hypertensive mice, and high fat-diets -fed LDL receptor knockout (LDLr−/−) mice. The elevated 26S proteasome activities were accompanied by ONOO−-mediated PA700/S10B nitration and increased 26S proteasome assembly and caused accelerated degradation of molecules (such as GTPCH I and thioredoxin) essential to endothelial homeostasis. Pharmacological (administration of MG132) or genetic inhibition (siRNA knockdown of PA700/S10B) of the 26S proteasome blocked the degradation of the vascular protective molecules and ablated endothelial dysfunction induced by diabetes, hypertension, and western diet feeding. Taken together, these results suggest that 26S proteasome activation by ONOO−-induced PA700/S10B tyrosine nitration is a common route for endothelial dysfunction seen in mouse models of hypertension, diabetes, and dyslipidemia

    ACE2 Deficiency Enhances Angiotensin II-Mediated Aortic Profilin-1 Expression, Inflammation and Peroxynitrite Production

    Get PDF
    Inflammation and oxidative stress play a crucial role in angiotensin (Ang) II-mediated vascular injury. Angiotensin-converting enzyme 2 (ACE2) has recently been identified as a specific Ang II-degrading enzyme but its role in vascular biology remains elusive. We hypothesized that loss of ACE2 would facilitate Ang II-mediated vascular inflammation and peroxynitrite production. 10-week wildtype (WT, Ace2+/y) and ACE2 knockout (ACE2KO, Ace2−/y) mice received with mini-osmotic pumps with Ang II (1.5 mg.kg−1.d−1) or saline for 2 weeks. Aortic ACE2 protein was obviously reduced in WT mice in response to Ang II related to increases in profilin-1 protein and plasma levels of Ang II and Ang-(1–7). Loss of ACE2 resulted in greater increases in Ang II-induced mRNA expressions of inflammatory cytokines monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-1β, and IL-6 without affecting tumor necrosis factor-α in aortas of ACE2KO mice. Furthermore, ACE2 deficiency led to greater increases in Ang II-mediated profilin-1 expression, NADPH oxidase activity, and superoxide and peroxynitrite production in the aortas of ACE2KO mice associated with enhanced phosphorylated levels of Akt, p70S6 kinase, extracellular signal-regulated kinases (ERK1/2) and endothelial nitric oxide synthase (eNOS). Interestingly, daily treatment with AT1 receptor blocker irbesartan (50 mg/kg) significantly prevented Ang II-mediated aortic profilin-1 expression, inflammation, and peroxynitrite production in WT mice with enhanced ACE2 levels and the suppression of the Akt-ERK-eNOS signaling pathways. Our findings reveal that ACE2 deficiency worsens Ang II-mediated aortic inflammation and peroxynitrite production associated with the augmentation of profilin-1 expression and the activation of the Akt-ERK-eNOS signaling, suggesting potential therapeutic approaches by enhancing ACE2 action for patients with vascular diseases

    NADPH oxidases in cardiovascular disease: insights from in vivo models and clinical studies

    Get PDF
    NADPH oxidase family enzymes (or NOXs) are the major sources of reactive oxygen species (ROS) that are implicated in the pathophysiology of many cardiovascular diseases. These enzymes appear to be especially important in the modulation of redox-sensitive signalling pathways that underlie key cellular functions such as growth, differentiation, migration and proliferation. Seven distinct members of the family have been identified of which four (namely NOX1, 2, 4 and 5) may have cardiovascular functions. In this article, we review our current understanding of the roles of NOX enzymes in several common cardiovascular disease states, with a focus on data from genetic studies and clinical data where available

    Long-Term Alterations of Cytokines and Growth Factors Expression in Irradiated Tissues and Relation with Histological Severity Scoring

    Get PDF
    PURPOSE: Beside its efficacy in cancer treatment, radiotherapy induces degeneration of healthy tissues within the irradiated area. The aim of this study was to analyze the variations of proinflammatory (IL-1α, IL-2, IL-6, TNF-α, IFN-γ), profibrotic (TGF-β1), proangiogneic (VEGF) and stem cell mobilizing (GM-CSF) cytokines and growth factors in an animal model of radiation-induced tissue degeneration. MATERIALS AND METHODS: 24 rats were irradiated unilaterally on the hindlimb at a monodose of 30 Gy. Six weeks (n=8), 6 months (n=8) and 1 year (n=8) after irradiation the mediators expression in skin and muscle were analyzed using Western blot and the Bio-Plex® protein array (BPA) technology. Additional histological severity for fibrosis, inflammation, vascularity and cellularity alterations scoring was defined from histology and immnunohistochemistry analyses. RESULTS: A significant increase of histological severity scoring was found in irradiated tissue. Skin tissues were more radio-sensitive than muscle. A high level of TGF-β1 expression was found throughout the study and a significant relation was evidenced between TGF-β1 expression and fibrosis scoring. Irradiated tissue showed a chronic inflammation (IL-2 and TNF-α significantly increased). Moreover a persistent expression of GM-CSF and VEGF was found in all irradiated tissues. The vascular score was related to TGF-β1 expression and the cellular alterations score was significantly related with the level of IL-2, VEGF and GM-CSF. CONCLUSION: The results achieved in the present study underline the complexity and multiplicity of radio-induced alterations of cytokine network. It offers many perspectives of development, for the comprehension of the mechanisms of late injuries or for the histological and molecular evaluation of the mode of action and the efficacy of rehabilitation techniques

    Thioredoxin in vascular biology: role in hypertension

    No full text
    The thioredoxin (TRX) system consists of TRX, TRX reductase, and NAD(P)H, and is able to reduce reactive oxygen species (ROS) through interactions with the redox-active center of TRX, which in turn can be reduced by TRX reductase in the presence of NAD(P)H. Among the TRX superfamily is peroxiredoxin (PRX),a family of non-heme peroxidases that catalyzes the reduction of hydroperoxides into water and alcohol. The TRX system is active in the vessel wall and functions either as an important endogenous antioxidant or interacts directly with signaling molecules to influence cell growth, apoptosis, and inflammation. Recent evidence implicates TRX in cardiovascular disease associated with oxidative stress, such as cardiac failure, arrhythmia, ischemia reperfusion injury, and hypertension. Thioredoxin activity is influenced by many mechanisms, including transcription, protein–protein interaction, and post-translational modification. Regulation of TRX in hypertensive models seems to be related to oxidative stress and is tissue- and cell-specific. Depending on the models of hypertension, TRX system could be upregulated or downregulated. The present review focuses on the role of TRX in vascular biology, describing its redox activities and biological properties in the media and endothelium of the vessel wall. In addition, the pathopysiological role of TRX in hypertension and other cardiovascular diseases is addressed
    corecore