519 research outputs found

    Tuning Properties of Iron Oxide Nanoparticles in Aqueous Synthesis without Ligands to Improve MRI Relaxivity and SAR.

    Get PDF
    Aqueous synthesis without ligands of iron oxide nanoparticles (IONPs) with exceptional properties still remains an open issue, because of the challenge to control simultaneously numerous properties of the IONPs in these rigorous settings. To solve this, it is necessary to correlate the synthesis process with their properties, but this correlation is until now not well understood. Here, we study and correlate the structure, crystallinity, morphology, as well as magnetic, relaxometric and heating properties of IONPs obtained for different durations of the hydrothermal treatment that correspond to the different growth stages of IONPs upon initial co-precipitation in aqueous environment without ligands. We find that their properties were different for IONPs with comparable diameters. Specifically, by controlling the growth of IONPs from primary to secondary particles firstly by colloidal and then also by magnetic interactions, we control their crystallinity from monocrystalline to polycrystalline IONPs, respectively. Surface energy minimization in the aqueous environment along with low temperature treatment is used to favor nearly defect-free IONPs featuring superior properties, such as high saturation magnetization, magnetic volume, surface crystallinity, the transversal magnetic resonance imaging (MRI) relaxivity (up to r₂ = 1189 mM(-1)·s(-1) and r₂/r₁ = 195) and specific absorption rate, SAR (up to 1225.1 W·gFe(-1))

    Gender, migration and the ambiguous enterprise of professionalizing domestic service: the case of vocational training for the unemployed in France

    Get PDF
    Drawing on ethnographic data concerning migrant male domestic workers, this article examines the gendered dimensions of the process of racialization in Italy and France. First, it shows that specific racialized constructions of masculinity are mobilized by the employers as well as by training and recruitment agencies. These constructions of masculinity are related to different forms of organization of the sector in each country and to different ideologies about the integration of migrants. Second, the data presented reveal the strategies used by migrant male domestic workers to reaffirm their masculinity in a traditionally feminized sector. In doing so, this article intends to explore the connections between international migration and the gendering of occupations, with regard to the construction and management of masculinities in domestic service. Finally, by examining men’s experiences, this article aims to contribute to a more complex definition of the international division of care work

    Effects of Aerobic Exercise Training in Community-Based Subjects Aged 80 and Older: A Pilot Study

    Full text link
    To assess the ability of sedentary, frail subjects aged 80 and older to train in a community-based exercise program and to evaluate clinical factors that predict improvements in peak oxygen consumption (VO 2 peak). DESIGN: Pretest, posttest. SETTING: Charlestown Retirement Community, Catonsville, Maryland PARTICIPANTS: Twenty-two (11 male, 11 female; mean age ± standard deviation = 84 ± 4.0, range 80–92) self-referred. INTERVENTION: Six months of moderate-intensity aerobic exercise training, two to three sessions/week, 20 to 30 minutes per session. Training modes included treadmill walking and/or stationary cycling. MEASUREMENTS: Baseline and follow-up maximal exercise treadmill tests (ETTs) with electrocardiogram monitoring and respiratory gas analysis. RESULTS: Six months of aerobic exercise training resulted in significant increases (mean ± standard deviation) in ETT duration (11.9 ± 3.3 vs 15.9 ± 4.3 minutes; P = .01), VO 2 peak (1.23 ± 0.37 vs 1.31 ± 0.36 L/min; P = .04), and oxygen pulse (9.3 ± 2.8 vs 10.1 ± 3.2; P = .03). Mean heart rate was significantly lower during submaximal ETT stages 1 through 4 ( P < .05), and resting systolic blood pressure decreased (146 ± 18 vs 133 ± 14 mmHg; P = .01) after training. Multiple regression analysis indicated that baseline VO 2 peak ( r = 0.75, P = .002) and the total amount of time spent in exercise training ( r = 0.55, P = .008) were independent predictors of the training-related improvements in VO 2 peak. CONCLUSION: Subjects aged 80 and older can increase aerobic capacity and reduce systolic blood pressure in a community-based exercise program of moderate intensity. The most important predictors of change in VO 2 peak were baseline VO 2 peak and the time spent in exercise training. Subjects with a lower baseline VO 2 peak had the greatest improvements in VO 2 peak after training.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65501/1/j.1532-5415.2002.50613.x.pd

    Sensor noise in <i>LISA Pathfinder</i>: An extensive in-flight review of the angular and longitudinal interferometric measurement system

    Full text link
    In a previous article [1], we have reported on the first subpicometer interferometer flown in space as part of ESA’s LISA Pathfinder mission, and have shown the residual sensor noise to be on the level of 32.0+2.4−1.7  fm/√Hz. This review provides a deeper and more complete overview of the full system and its interferometric mission performance under varying operational conditions, allowing a much more detailed view on the noise model. We also include the optical measurements of rotations through differential wave front sensing (DWS), which reached a sensitivity of as good as 100  prad/√Hz. We present more evidence for the long-term stability of the interferometric performance and components. This proves a solid foundation for future interferometry in space such as the LISA mission

    Transient acceleration events in LISA Pathfinder data: Properties and possible physical origin

    Full text link
    We present an in depth analysis of the transient events, or glitches, detected at a rate of about one per day in the differential acceleration data of LISA Pathfinder. We show that these glitches fall in two rather distinct categories: fast transients in the interferometric motion readout on one side, and true force transient events on the other. The former are fast and rare in ordinary conditions. The second may last from seconds to hours and constitute the majority of the glitches. We present an analysis of the physical and statistical properties of both categories, including a cross-analysis with other time series like magnetic fields, temperature, and other dynamical variables. Based on these analyses we discuss the possible sources of the force glitches and identify the most likely, among which the outgassing environment surrounding the test-masses stands out. We discuss the impact of these findings on the LISA design and operation, and some risk mitigation measures, including experimental studies that may be conducted on the ground, aimed at clarifying some of the questions left open by our analysis

    GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run

    Get PDF
    The third Gravitational-Wave Transient Catalog (GWTC-3) describes signals detected with Advanced LIGO and Advanced Virgo up to the end of their third observing run. Updating the previous GWTC-2.1, we present candidate gravitational waves from compact binary coalescences during the second half of the third observing run (O3b) between 1 November 2019, 15∶00 Coordinated Universal Time (UTC) and 27 March 2020, 17∶00 UTC. There are 35 compact binary coalescence candidates identified by at least one of our search algorithms with a probability of astrophysical origin pastro>0.5. Of these, 18 were previously reported as low-latency public alerts, and 17 are reported here for the first time. Based upon estimates for the component masses, our O3b candidates with pastro>0.5 are consistent with gravitational-wave signals from binary black holes or neutron-star–black-hole binaries, and we identify none from binary neutron stars. However, from the gravitational-wave data alone, we are not able to measure matter effects that distinguish whether the binary components are neutron stars or black holes. The range of inferred component masses is similar to that found with previous catalogs, but the O3b candidates include the first confident observations of neutron-star–black-hole binaries. Including the 35 candidates from O3b in addition to those from GWTC-2.1, GWTC-3 contains 90 candidates found by our analysis with pastro>0.5 across the first three observing runs. These observations of compact binary coalescences present an unprecedented view of the properties of black holes and neutron stars

    Model-based Cross-correlation Search for Gravitational Waves from the Low-mass X-Ray Binary Scorpius X-1 in LIGO O3 Data

    Full text link
    We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO and Advanced Virgo. This is a semicoherent search that uses details of the signal model to coherently combine data separated by less than a specified coherence time, which can be adjusted to balance sensitivity with computing cost. The search covered a range of gravitational-wave frequencies from 25 to 1600 Hz, as well as ranges in orbital speed, frequency, and phase determined from observational constraints. No significant detection candidates were found, and upper limits were set as a function of frequency. The most stringent limits, between 100 and 200 Hz, correspond to an amplitude h 0_{0} of about 10−25^{−25} when marginalized isotropically over the unknown inclination angle of the neutron star’s rotation axis, or less than 4 × 10−26^{−26} assuming the optimal orientation. The sensitivity of this search is now probing amplitudes predicted by models of torque balance equilibrium. For the usual conservative model assuming accretion at the surface of the neutron star, our isotropically marginalized upper limits are close to the predicted amplitude from about 70 to 100 Hz; the limits assuming that the neutron star spin is aligned with the most likely orbital angular momentum are below the conservative torque balance predictions from 40 to 200 Hz. Assuming a broader range of accretion models, our direct limits on gravitational-wave amplitude delve into the relevant parameter space over a wide range of frequencies, to 500 Hz or more

    Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data

    Full text link
    Results are presented of searches for continuous gravitational waves from 20 accreting millisecond x-ray pulsars with accurately measured spin frequencies and orbital parameters, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. The search algorithm uses a hidden Markov model, where the transition probabilities allow the frequency to wander according to an unbiased random walk, while the J-statistic maximum-likelihood matched filter tracks the binary orbital phase. Three narrow subbands are searched for each target, centered on harmonics of the measured spin frequency. The search yields 16 candidates, consistent with a false alarm probability of 30% per subband and target searched. These candidates, along with one candidate from an additional target-of-opportunity search done for SAX J1808.4−3658, which was in outburst during one month of the observing run, cannot be confidently associated with a known noise source. Additional follow-up does not provide convincing evidence that any are a true astrophysical signal. When all candidates are assumed nonastrophysical, upper limits are set on the maximum wave strain detectable at 95% confidence, h95%0. The strictest constraint is h95%0=4.7×10−26 from IGR J17062−6143. Constraints on the detectable wave strain from each target lead to constraints on neutron star ellipticity and r-mode amplitude, the strictest of which are Δ95%=3.1×10−7 and α95%=1.8×10−5 respectively. This analysis is the most comprehensive and sensitive search of continuous gravitational waves from accreting millisecond x-ray pulsars to date

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Full text link
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo’s third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours–months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets

    All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO’s and Advanced Virgo’s first three observing runs

    Full text link
    We present the first results from an all-sky all-frequency (ASAF) search for an anisotropic stochastic gravitational-wave background using the data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. Upper limit maps on broadband anisotropies of a persistent stochastic background were published for all observing runs of the LIGO-Virgo detectors. However, a broadband analysis is likely to miss narrowband signals as the signal-to-noise ratio of a narrowband signal can be significantly reduced when combined with detector output from other frequencies. Data folding and the computationally efficient analysis pipeline, PyStoch, enable us to perform the radiometer map-making at every frequency bin. We perform the search at 3072 HEALPix equal area pixels uniformly tiling the sky and in every frequency bin of width 1/32  Hz in the range 20–1726 Hz, except for bins that are likely to contain instrumental artefacts and hence are notched. We do not find any statistically significant evidence for the existence of narrowband gravitational-wave signals in the analyzed frequency bins. Therefore, we place 95% confidence upper limits on the gravitational-wave strain for each pixel-frequency pair, the limits are in the range (0.030−9.6)×10−24. In addition, we outline a method to identify candidate pixel-frequency pairs that could be followed up by a more sensitive (and potentially computationally expensive) search, e.g., a matched-filtering-based analysis, to look for fainter nearly monochromatic coherent signals. The ASAF analysis is inherently independent of models describing any spectral or spatial distribution of power. We demonstrate that the ASAF results can be appropriately combined over frequencies and sky directions to successfully recover the broadband directional and isotropic results
    • 

    corecore