225 research outputs found

    e‐Maintenance Framework for Strategic Asset Management in Tertiary Institutions

    Get PDF
    Tertiary institutions require buildings such as its senate building, classrooms, laboratories, administrative rooms, hostels and other offices in order to function. Providing and maintaining these buildings require a lot of planning and capital investment. The study examined the prospects of using e‐ Maintenance platform for strategic asset management in tertiary institutions. This study noted that adequate maintenance of the building infrastructural base of tertiary institutions is crucial for sustainability in the face of dwindling funds in the education sector. In order to automate the e‐ Maintenance process for strategic maintenance of the institution’s building maintenance, a use case diagram, system block diagram, sequence diagram and activity diagram were designed and presented in this study. Three (3) main users are essential in the sequence of operation of the e‐Maintenance platform. These users represent the building occupants, the facility manager and the management personnel; for effective oversite and performance monitoring. The methodology of this research includes using the combination of HTML, CSS and the C‐Sharp programming language for the interface design and server side scripting while MySQL was the database platform used for storing and retrieving the data used for the application. In conclusion, the study developed an e‐Maintenance framework for strategic asset management in tertiary institutions. Keywords Asset management Automation Construction industr

    Cavalier King Charles Spaniels with Chiari-like malformation and Syringomyelia have increased variability of spatio-temporal gait characteristics

    Get PDF
    Abstract Background Chiari-like malformation in the Cavalier King Charles Spaniel is a herniation of the cerebellum and brainstem into or through the foramen magnum. This condition predisposes to Syringomyelia; fluid filled syrinxes within the spinal cord. The resulting pathology in spinal cord and cerebellum create neuropathic pain and changes in gait. This study aims to quantify the changes in gait for Cavalier King Charles Spaniel with Chiari-like malformation and Syringomyelia. Methods We compared Cavalier King Charles Spaniel with Chiari-like malformation with (n = 9) and without (n = 8) Syringomyelia to Border Terriers (n = 8). Two video cameras and manual tracking was used to quantify gait parameters. Results and conclusions We found a significant increase in coefficient of variation for the spatio-temporal characteristics and ipsilateral distance between paws and a wider base of support in the thoracic limbs but not in the pelvic limbs for Cavalier King Charles Spaniels compared with the border terrier

    Overnight unilateral withdrawal of thalamic deep brain stimulation to identify reversibility of gait disturbances

    Get PDF
    BACKGROUND: Gait disturbances are frequent side effects related to chronic thalamic deep brain stimulation (DBS) that may persist beyond cessation of stimulation. OBJECTIVE: We investigate the temporal dynamics and clinical effects of an overnight unilateral withdrawal of DBS on gait disturbances. METHODS: 10 essential tremor (ET) patients with gait disturbances following thalamic DBS underwent clinical and kinematic gait assessment ON DBS, after instant and after an overnight unilateral withdrawal of DBS of the hemisphere corresponding to the non-dominant hand. The effect of stimulation withdrawal on gait performance was quantitatively assessed using clinical rating and inertial sensors and compared to gait kinematics from 10 additional patients with ET but without subjective gait impairment. DBS leads were reconstructed and active contacts were visualized in relation to surrounding axonal pathways and nuclei. RESULTS: Patients with gait deterioration following DBS exhibited greater excursion of sagittal trunk movements and greater variability of stride length and shank range of motion compared to ET patients without DBS and without subjective gait impairment. Overnight but not instant withdrawal of unilateral DBS resulted in significant reduction of SARA axial subscore and stride length variability, while tremor control of the dominant hand was preserved. Cerebellothalamic, striatopallidofugal and corticospinal fibers were in direct vicinity of transiently deactivated contacts. CONCLUSION: Non-dominant unilateral cessation of VIM DBS may serve as a therapeutic option as well as a diagnostic tool to detect stimulation-induced gait disturbances that is applicable in ambulatory settings due to preserved functionality of the dominant hand

    On-site data cast doubts on the hypothesis of shifting cultivation in the Late Neolithic (c. 4300-2400 cal. BC): Landscape management as an alternative paradigm

    Get PDF
    This article brings together in a comprehensive way, and for the first time, on- and off-site palaeoenvironmental data from the area of the Central European lake dwellings (a UNESCO World Cultural Heritage Site since 2011). The types of data considered are as follows: high-resolution off-site pollen cores, including micro-charcoal counts, and on-site data, including botanical macro- and micro-remains, hand-collected animal bones, remains of microfauna, and data on woodland management (dendrotypology). The period considered is the late Neolithic (c. 4300–2400 cal. BC). For this period, especially for its earlier phases, discussions of land-use patterns are contradictory. Based on off-site data, slash-and-burn – as known from tropical regions – is thought to be the only possible way to cultivate the land. On-site data however show a completely different picture: all indications point to the permanent cultivation of cereals (Triticum spp., Hordeum vulgare), pea (Pisum sativum), flax (Linum usitatissimum) and opium-poppy (Papaver somniferum). Cycles of landscape use are traceable, including coppicing and moving around the landscape with animal herds. Archaeobiological studies further indicate also that hunting and gathering were an important component and that the landscape was manipulated accordingly. Late Neolithic land-use systems also included the use of fire as a tool for opening up the landscape. Here we argue that bringing together all the types of palaeoenvironmental proxies in an integrative way allows us to draw a more comprehensive and reliable picture of the land-use systems in the late Neolithic than had been reconstructed previously largely on the basis of off-site data

    Filament Depolymerization Can Explain Chromosome Pulling during Bacterial Mitosis

    Get PDF
    Chromosome segregation is fundamental to all cells, but the force-generating mechanisms underlying chromosome translocation in bacteria remain mysterious. Caulobacter crescentus utilizes a depolymerization-driven process in which a ParA protein structure elongates from the new cell pole, binds to a ParB-decorated chromosome, and then retracts via disassembly, pulling the chromosome across the cell. This poses the question of how a depolymerizing structure can robustly pull the chromosome that disassembles it. We perform Brownian dynamics simulations with a simple, physically consistent model of the ParABS system. The simulations suggest that the mechanism of translocation is “self-diffusiophoretic”: by disassembling ParA, ParB generates a ParA concentration gradient so that the ParA concentration is higher in front of the chromosome than behind it. Since the chromosome is attracted to ParA via ParB, it moves up the ParA gradient and across the cell. We find that translocation is most robust when ParB binds side-on to ParA filaments. In this case, robust translocation occurs over a wide parameter range and is controlled by a single dimensionless quantity: the product of the rate of ParA disassembly and a characteristic relaxation time of the chromosome. This time scale measures the time it takes for the chromosome to recover its average shape after it is has been pulled. Our results suggest explanations for observed phenomena such as segregation failure, filament-length-dependent translocation velocity, and chromosomal compaction

    Chromosome Driven Spatial Patterning of Proteins in Bacteria

    Get PDF
    The spatial patterning of proteins in bacteria plays an important role in many processes, from cell division to chemotaxis. In the asymmetrically dividing bacteria Caulobacter crescentus, a scaffolding protein, PopZ, localizes to both poles and aids the differential patterning of proteins between mother and daughter cells during division. Polar patterning of misfolded proteins in Escherechia coli has also been shown, and likely plays an important role in cellular ageing. Recent experiments on both of the above systems suggest that the presence of chromosome free regions along with protein multimerization may be a mechanism for driving the polar localization of proteins. We have developed a simple physical model for protein localization using only these two driving mechanisms. Our model reproduces all the observed patterns of PopZ and misfolded protein localization - from diffuse, unipolar, and bipolar patterns and can also account for the observed patterns in a variety of mutants. The model also suggests new experiments to further test the role of the chromosome in driving protein patterning, and whether such a mechanism is responsible for helping to drive the differentiation of the cell poles

    Characterization of the Partitioning System of Myxococcus Plasmid pMF1

    Get PDF
    pMF1 is the only autonomously replicating plasmid that has been recently identified in myxobacteria. This study characterized the partitioning (par) system of this plasmid. The fragment that significantly increased the retaining stability of plasmids in Myxococcus cells in the absence of selective antibiotics contained three open reading frames (ORFs) pMF1.21-pMF1.23 (parCAB). The pMF1.22 ORF (parA) is homologous to members of the parA ATPase family, with the highest similarity (56%) to the Sphingobium japonicum ParA-like protein, while the other two ORFs had no homologs in GenBank. DNase I footprinting and electrophoretic mobility shift assays showed that the pMF1.23 (parB) product is a DNA-binding protein of iteron DNA sequences, while the product of pMF1.21 (parC) has no binding activity but is able to enhance the DNA-binding activity of ParB to iterons. The ParB protein autogenously repressed the expression of the par genes, consistent with the type Ib par pattern, while the ParC protein has less repressive activity. The ParB-binding iteron sequences are distributed not only near the partitioning gene loci but also along pMF1. These results indicate that the pMF1 par system has novel structural and functional characteristics

    Cerebral activations related to ballistic, stepwise interrupted and gradually modulated movements in parkinson patients

    Get PDF
    Patients with Parkinson's disease (PD) experience impaired initiation and inhibition of movements such as difficulty to start/stop walking. At single-joint level this is accompanied by reduced inhibition of antagonist muscle activity. While normal basal ganglia (BG) contributions to motor control include selecting appropriate muscles by inhibiting others, it is unclear how PD-related changes in BG function cause impaired movement initiation and inhibition at single-joint level. To further elucidate these changes we studied 4 right-hand movement tasks with fMRI, by dissociating activations related to abrupt movement initiation, inhibition and gradual movement modulation. Initiation and inhibition were inferred from ballistic and stepwise interrupted movement, respectively, while smooth wrist circumduction enabled the assessment of gradually modulated movement. Task-related activations were compared between PD patients (N = 12) and healthy subjects (N = 18). In healthy subjects, movement initiation was characterized by antero-ventral striatum, substantia nigra (SN) and premotor activations while inhibition was dominated by subthalamic nucleus (STN) and pallidal activations, in line with the known role of these areas in simple movement. Gradual movement mainly involved antero-dorsal putamen and pallidum. Compared to healthy subjects, patients showed reduced striatal/SN and increased pallidal activation for initiation, whereas for inhibition STN activation was reduced and striatal-thalamo-cortical activation increased. For gradual movement patients showed reduced pallidal and increased thalamo-cortical activation. We conclude that PD-related changes during movement initiation fit the (rather static) model of alterations in direct and indirect BG pathways. Reduced STN activation and regional cortical increased activation in PD during inhibition and gradual movement modulation are better explained by a dynamic model that also takes into account enhanced responsiveness to external stimuli in this disease and the effects of hyper-fluctuating cortical inputs to the striatum and STN in particular

    Adults’ number-line estimation strategies: Evidence from eye movements

    Get PDF
    Although the development of number-line estimation ability is well documented, little is known of the processes underlying successful estimators’ mappings of numerical information onto spatial representations during these tasks. We tracked adults’ eye movements during a number-line estimation task to investigate the processes underlying number-to-space translation, with three main results. First, eye movements were strongly related to the target number’s location, and early processing measures directly predicted later estimation performance. Second, fixations and estimates were influenced by the size of the first number presented, indicating that adults calibrate their estimates online. Third, adults’ number-line estimates demonstrated patterns of error consistent with the predictions of psychophysical models of proportion estimation, and eye movement data predicted the specific error patterns we observed. These results support proportion-based accounts of number-line estimation and suggest that adults’ translation of numerical information into spatial representations is a rapid, online process
    corecore