27 research outputs found

    Thin Strut CoCr biodegradable polymer biolimus A9-eluting stents versus thicker strut stainless steel biodegradable polymer Biolimus A9-eluting stents: Two-year clinical outcomes

    Get PDF
    © 2021 The Authors. Published by Hindawi. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1155/2021/6654515Background. While thinner struts are associated with improved clinical outcomes in bare-metal stents (BMS), reducing strut thickness may affect drug delivery from drug-eluting stents (DES) and there are limited data comparing otherwise similar thin and thick strut DES. We assessed 2-year outcomes of patients treated with a thin strut (84-88um) cobalt-chromium, biodegradable polymer, Biolimus A9-eluting stent (CoCr-BP-BES) and compared these to patients treated with a stainless steel, biodegradable polymer, Biolimus A9-eluting stent (SS-BP-BES). Methods. In total, 1257 patients were studied: 400 patients from 12 centres receiving ≥1 CoCr-BP-BES in the prospective Biomatrix Alpha registry underwent prespecified comparison with 857 patients who received ≥1 Biomatrix Flex SS-BP-BES in the LEADERS study (historical control). The primary outcome was major adverse cardiac events (MACE)-cardiac death, myocardial infarction (MI), or clinically driven target vessel revascularization (cd-TVR). Propensity analysis was used to adjust for differences in baseline variables and a landmark analysis at day-3 to account for differences in periprocedural MI definitions. Results. MACE at 2 years occurred in 6.65% CoCr-BP-BES versus 13.23% SS-BP-BES groups (unadjusted HR 0.48 [0.31-0.73]; P = 0.0005). Following propensity analysis, 2-year adjusted MACE rates were 7.4% versus 13.3% (HR 0.53 [0.35-0.79]; P = 0.004). Definite or probable stent thrombosis, adjudicated using identical criteria in both studies, occurred less frequently with CoCr-BP-BES (1.12% vs. 3.22%; adjusted HR 0.32 [0.11-0.9]; P = 0.034). In day-3 landmark analysis, the difference in 2-year MACE was no longer significant but there was a lower patient-orientated composite endpoint (11.7% vs. 18.4%; HR 0.6 [0.43-0.83]; P = 0.006) and a trend to lower target vessel failure (5.8% vs. 9.1%; HR 0.63 [0.4-1.00]; P = 0.078). Conclusion. At 2-year follow-up, propensity-adjusted analysis showed the thin strut (84-88um) Biomatrix Alpha CoCr-BP-BES was associated with improved clinical outcomes compared with the thicker strut (114-120um) Biomatrix Flex SSBP- BES.Published versio

    The impact of glucose-insulin-potassium infusion in acute myocardial infarction on infarct size and left ventricular ejection fraction [ISRCTN56720616]

    Get PDF
    BACKGROUND: Favorable clinical outcomes have been observed with glucose-insulin-potassium infusion (GIK) in acute myocardial infarction (MI). The mechanisms of this beneficial effect have not been delineated clearly. GIK has metabolic, anti-inflammatory and profibrinolytic effects and it may preserve the ischemic myocardium. We sought to assess the effect of GIK infusion on infarct size and left ventricular function, as part of a randomized controlled trial. METHODS: Patients (n = 940) treated for acute MI by primary percutaneous coronary intervention (PCI) were randomized to GIK infusion or no infusion. Endpoints were the creatinine kinase MB-fraction (CK-MB) and left ventricular ejection fraction (LVEF). CK-MB levels were determined 0, 2, 4, 6, 24, 48, 72 and 96 hours after admission and the LVEF was measured before discharge. RESULTS: There were no differences between the two groups in the time course or magnitude of CK-MB release: the peak CK-MB level was 249 ± 228 U/L in the GIK group and 240 ± 200 U/L in the control group (NS). The mean LVEF was 43.7 ± 11.0 % in the GIK group and 42.4 ± 11.7% in the control group (P = 0.12). A LVEF ≤ 30% was observed in 18% in the controls and in 12% of the GIK group (P = 0.01). CONCLUSION: Treatment with GIK has no effect on myocardial function as determined by LVEF and by the pattern or magnitude of enzyme release. However, left ventricular function was preserved in GIK treated patients

    Lack of direct role for calcium in ischemic diastolic dysfunction in isolated hearts.

    No full text
    BACKGROUND: Ischemia is characterized by an increase in intracellular calcium and occurrence of diastolic dysfunction. We investigated whether the myocyte calcium level is an important direct determinant of ischemic diastolic dysfunction. METHODS AND RESULTS: We exposed isolated, perfused isovolumic (balloon in left ventricle) rat and rabbit hearts to low-flow ischemia and increased extracellular calcium (from 1.5 to 16 mmol/L) for brief periods. Intracellular calcium was measured by aequorin. Low-flow ischemia resulted in a 270% increase (P:<0.05) in diastolic intracellular calcium, a 50% (P:<0.05) calcium transient amplitude decrease, and a 52% (P:<0.05) slowing of calcium transient decline. Diastolic pressure increased by 6+/-2 mm Hg (P:<0.05), and rate of systolic pressure decay decreased by 65% (P:<0.05). Experimentally increasing extracellular calcium doubled both intracellular diastolic calcium and calcium transient amplitude, concomitant with a developed pressure increase; however, there was no increase in ischemic diastolic pressure, slowing of the calcium transient decay, or further slowing of systolic pressure decay. Similarly, after 45 minutes of low-flow ischemia, after diastolic pressure had increased from 8.5+/-0.6 to 19.7+/-3.5 mm Hg (P:<0.001), intracoronary high-molar calcium chloride infusion increased systolic pressure from 36+/-4 to 63+/-11 mm Hg (P:<0.001), indicating an increase in intracellular calcium, but it decreased diastolic pressure from 19. 7+/-3.5 to 17.5+/-3.7 mm Hg (P:<0.01). Conversely, EGTA infusion decreased systolic pressure, indicating a decrease in intracellular calcium, but did not decrease diastolic pressure. CONCLUSIONS: When calcium availability was experimentally altered during ischemia, there was no alteration in left ventricular diastolic pressure, suggesting that ischemic diastolic dysfunction is not directly mediated by a calcium activated tension
    corecore