160 research outputs found

    Coronary artery spasm and non-Q-wave myocardial infarction following intravenous ephedrine in two healthy women under spinal anaesthesia

    Get PDF
    Vasovagal episodes occur frequently in young healthy patients undergoing venous cannulation and loco-regional anaesthesia. We report two cases of severe coronary vasospasm and non-Qwave infarction in healthy young women after administration of ephedrine for vasovagal symptoms at the onset of spinal anaesthesia. In the light of unopposed vagal predominance predisposing patients to coronary vasospasm, even in young healthy patients, atrophine and not ephedrine should be the first line treatment for bradycardia with or without hypotension under spinal anaesthesi

    Coronary reserve in patients with aortic valve disease before and after successful aortic valve replacement

    Get PDF
    In patients with aortic valve disease and normal coronary angiograms coronary reserve was determined by the coronary sinus thermodilution technique. Three groups of patients were studied: 37 preoperative patients; 18 different patients 12.52 months after aortic valve replacement and seven control subjects with no cardiac disease. Coronary flow ratio (dipyridamole/rest) was diminished in preoperative compared with postoperative patients (1.66±0.44 vs 2.22±0.85; P<0.05) as well as with controls (2.80±0.84; P<0.01), and corresponding coronary resistance ratio (dipyridamolej rest) was higher in preoperative patients than in both other groups (0.61±0.17 vs 0.48±0.14; P<0.05 vs 0.37±0.10; P<0.01). Differences in the flow ratio, but not in the resistance ratio, were significant (P<0.05) in patients after aortic valve replacement compared with controls. Total coronary sinus blood flow at rest was elevated in preoperative compared with both postoperative patients and controls (252±99 vs 169±63; P<0.01; vs 170±35 ml.min−1, P<0.05), whereas flows after maximal vasodilation did not differ among the three groups (416± 184 vs 361 ± 150 vs 488± 235 ml.min−1). Postoperative patients showed a distinct, though not total regression of left ventricular angiographic muscle mass index and wall thickness. Nine of the 18 postoperative patients showed a normal coronary flow reserve and nine showed subnormal response. These two subgroups did not differ with respect to preoperative macroscopic and microscopic measures of hypertrophy. Thus in aortic valve disease, the reduced coronary vasodilator capacity is mainly due to an elevated coronary flow at rest, while the maximal coronary blood flow achieved is identical to that of postoperative patients and controls. With regression of left ventricular hypertrophy, flow at rest decreases and this leads to a distinct improvement of coronary flow reserv

    Two-year clinical outcome after implantation of sirolimus-eluting and paclitaxel-eluting stents in diabetic patients

    Get PDF
    Aims Percutaneous coronary intervention (PCI) in diabetic patients is associated with an increased risk of restenosis and major adverse cardiac events (MACE). We assessed the impact of diabetes on long-term outcome after PCI with sirolimus-eluting (SES) and paclitaxel-eluting (PES) stents. Methods and results In the SIRTAX trial, 1012 patients were randomized to treatment with SES (n = 503) or PES (n = 509). A stratified analysis of outcomes was performed according to the presence or absence of diabetes. Baseline characteristics were well balanced between SES and PES in patients with (N = 201) and without diabetes (N = 811). Clinical outcome was worse in diabetic compared with non-diabetic patients regarding death (9.0% vs. 4.1%, P = 0.004) and MACE (defined as cardiac death, myocardial infarction, or TLR; 19.9% vs. 12.7%, P = 0.007) at 2 years. Among diabetic patients, SES reduced MACE by 47% (14.8% vs. 25.8%, HR = 0.52, P = 0.05) and TLR by 61% (7.4% vs. 17.2%, HR = 0.39, P = 0.03) compared with PES at 2 years. Conclusion Diabetic patients have worse prognosis than non-diabetic patients undergoing PCI with DES. Among the diabetic patient population of this trial, SES reduce repeat revascularization procedures and MACE more effectively than PES and to a similar degree as in non-diabetic patient

    Coronary reserve in patients with aortic valve disease before and after successful aortic valve replacement

    Full text link
    In patients with aortic valve disease and normal coronary angiograms coronary reserve was determined by the coronary sinus thermodilution technique. Three groups of patients were studied: 37 preoperative patients; 18 different patients 12.52 months after aortic valve replacement and seven control subjects with no cardiac disease. Coronary flow ratio (dipyridamole/rest) was diminished in preoperative compared with postoperative patients (1.66±0.44 vs 2.22±0.85; P<0.05) as well as with controls (2.80±0.84; P<0.01), and corresponding coronary resistance ratio (dipyridamolej rest) was higher in preoperative patients than in both other groups (0.61±0.17 vs 0.48±0.14; P<0.05 vs 0.37±0.10; P<0.01). Differences in the flow ratio, but not in the resistance ratio, were significant (P<0.05) in patients after aortic valve replacement compared with controls. Total coronary sinus blood flow at rest was elevated in preoperative compared with both postoperative patients and controls (252±99 vs 169±63; P<0.01; vs 170±35 ml.min−1, P<0.05), whereas flows after maximal vasodilation did not differ among the three groups (416± 184 vs 361 ± 150 vs 488± 235 ml.min−1). Postoperative patients showed a distinct, though not total regression of left ventricular angiographic muscle mass index and wall thickness. Nine of the 18 postoperative patients showed a normal coronary flow reserve and nine showed subnormal response. These two subgroups did not differ with respect to preoperative macroscopic and microscopic measures of hypertrophy. Thus in aortic valve disease, the reduced coronary vasodilator capacity is mainly due to an elevated coronary flow at rest, while the maximal coronary blood flow achieved is identical to that of postoperative patients and controls. With regression of left ventricular hypertrophy, flow at rest decreases and this leads to a distinct improvement of coronary flow reserv

    Cellular actors, Toll-like receptors, and local cytokine profile in acute coronary syndromes

    Get PDF
    Aims Inflammation plays a key role in acute coronary syndromes (ACS). Toll-like receptors (TLR) on leucocytes mediate inflammation and immune responses. We characterized leucocytes and TLR expression within coronary thrombi and compared cytokine levels from the site of coronary occlusion with aortic blood (AB) in ACS patients. Methods and results In 18 ACS patients, thrombi were collected by aspiration during primary percutaneous coronary intervention. Thrombi and AB from these patients as well as AB from 10 age-matched controls without coronary artery disease were assessed by FACS analysis for cellular distribution and TLR expression. For further discrimination of ACS specificity, seven non-coronary intravascular thrombi and eight thrombi generated in vitro were analysed. In 17 additional patients, cytokine levels were determined in blood samples from the site of coronary occlusion under distal occlusion and compared with AB. In coronary thrombi from ACS, the percentage of monocytes related to the total leucocyte count was greater than in AB (47 vs. 20%, P = 0.0002). In thrombi, TLR-4 and TLR-2 were overexpressed on CD14-labelled monocytes, and TLR-2 was increased on CD66b-labelled granulocytes, in comparison with leucocytes in AB. In contrast, in vitro and non-coronary thrombi exhibited no overexpression of TLR-4. Local blood samples taken under distal occlusion revealed elevated concentrations of chemokines (IL-8, MCP-1, eotaxin, MIP-1α, and IP-10) and cytokines (IL-1ra, IL-6, IL-7, IL-12, IL-17, IFN-α, and granulocyte-macrophage colony-stimulating factor) regulating both innate and adaptive immunity (all P < 0.05). Conclusion In ACS patients, monocytes accumulate within thrombi and specifically overexpress TLR-4. Together with the local expression patterns of chemokines and cytokines, the increase of TLR-4 reflects a concerted activation of this inflammatory pathway at the site of coronary occlusion in AC

    The impact of glucose-insulin-potassium infusion in acute myocardial infarction on infarct size and left ventricular ejection fraction [ISRCTN56720616]

    Get PDF
    BACKGROUND: Favorable clinical outcomes have been observed with glucose-insulin-potassium infusion (GIK) in acute myocardial infarction (MI). The mechanisms of this beneficial effect have not been delineated clearly. GIK has metabolic, anti-inflammatory and profibrinolytic effects and it may preserve the ischemic myocardium. We sought to assess the effect of GIK infusion on infarct size and left ventricular function, as part of a randomized controlled trial. METHODS: Patients (n = 940) treated for acute MI by primary percutaneous coronary intervention (PCI) were randomized to GIK infusion or no infusion. Endpoints were the creatinine kinase MB-fraction (CK-MB) and left ventricular ejection fraction (LVEF). CK-MB levels were determined 0, 2, 4, 6, 24, 48, 72 and 96 hours after admission and the LVEF was measured before discharge. RESULTS: There were no differences between the two groups in the time course or magnitude of CK-MB release: the peak CK-MB level was 249 ± 228 U/L in the GIK group and 240 ± 200 U/L in the control group (NS). The mean LVEF was 43.7 ± 11.0 % in the GIK group and 42.4 ± 11.7% in the control group (P = 0.12). A LVEF ≤ 30% was observed in 18% in the controls and in 12% of the GIK group (P = 0.01). CONCLUSION: Treatment with GIK has no effect on myocardial function as determined by LVEF and by the pattern or magnitude of enzyme release. However, left ventricular function was preserved in GIK treated patients

    Contribution of Human Muscle-Derived Cells to Skeletal Muscle Regeneration in Dystrophic Host Mice

    Get PDF
    Background: Stem cell transplantation is a promising potential therapy for muscular dystrophies, but for this purpose, the cells need to be systemically-deliverable, give rise to many muscle fibres and functionally reconstitute the satellite cell niche in the majority of the patient's skeletal muscles. Human skeletal muscle-derived pericytes have been shown to form muscle fibres after intra-arterial transplantation in dystrophin-deficient host mice. Our aim was to replicate and extend these promising findings.Methodology/Principal Findings: Isolation and maintenance of human muscle derived cells (mdcs) was performed as published for human pericytes. Mdscs were characterized by immunostaining, flow cytometry and RT-PCR; also, their ability to differentiate into myotubes in vitro and into muscle fibres in vivo was assayed. Despite minor differences between human mdcs and pericytes, mdscs contributed to muscle regeneration after intra-muscular injection in mdx nu/nu mice, the CD56+ sub-population being especially myogenic. However, in contrast to human pericytes delivered intra-arterially in mdx SCID hosts, mdscs did not contribute to muscle regeneration after systemic delivery in mdx nu/nu hosts.Conclusions/Significance: Our data complement and extend previous findings on human skeletal muscle-derived stem cells, and clearly indicate that further work is necessary to prepare pure cell populations from skeletal muscle that maintain their phenotype in culture and make a robust contribution to skeletal muscle regeneration after systemic delivery in dystrophic mouse models. Small differences in protocols, animal models or outcome measurements may be the reason for differences between our findings and previous data, but nonetheless underline the need for more detailed studies on muscle-derived stem cells and independent replication of results before use of such cells in clinical trials
    corecore