2,504 research outputs found

    CP Violating Asymmetry in Stop Decay into Bottom and Chargino

    Full text link
    In the MSSM with complex parameters, loop corrections to the decay of a stop into a bottom quark and a chargino can lead to a CP violating decay rate asymmetry. We calculate this asymmetry at full one-loop level and perform a detailed numerical study, analyzing the dependence on the parameters and complex phases involved. In addition, we take the Yukawa couplings of the top and bottom quark running. We account for the constraints on the parameters coming from several experimental limits. Asymmetries of several percent are obtained. We also comment on the feasibility of measuring this asymmetry at the LHC.Comment: Contributed talk given by Sebastian Frank in June 2009 at SUSY09 - 17th International Conference on Supersymmetry and the Unification of Fundamental Interactions, Northeastern University, Boston, USA. To appear in the AIP conference proceedings, 4 pages, 7 figures (fixed links in references

    Hopping conductivity in heavily doped n-type GaAs layers in the quantum Hall effect regime

    Full text link
    We investigate the magnetoresistance of epitaxially grown, heavily doped n-type GaAs layers with thickness (40-50 nm) larger than the electronic mean free path (23 nm). The temperature dependence of the dissipative resistance R_{xx} in the quantum Hall effect regime can be well described by a hopping law (R_{xx} \propto exp{-(T_0/T)^p}) with p=0.6. We discuss this result in terms of variable range hopping in a Coulomb gap together with a dependence of the electron localization length on the energy in the gap. The value of the exponent p>0.5 shows that electron-electron interactions have to be taken into account in order to explain the occurrence of the quantum Hall effect in these samples, which have a three-dimensional single electron density of states.Comment: 5 pages, 2 figures, 1 tabl

    Fatigue of nanostructured materials

    Get PDF

    Electroweak radiative corrections to single Higgs-boson production in e+e- annihilation

    Get PDF
    We have calculated the complete electroweak O(alpha) radiative corrections to the single Higgs-boson production processes e+ e- --> nu_l anti-nu_l H (l=e,mu,tau) in the electroweak Standard Model. Initial-state radiation beyond O(alpha) is included in the structure-function approach. The calculation of the corrections is briefly described, and numerical results are presented for the total cross section. In the G_mu scheme, the bulk of the corrections is due to initial-state radiation, which affects the cross section at the level of -7% at high energies and even more in the ZH threshold region. The remaining bosonic and fermionic corrections are at the level of a few per cent. The confusing situation in the literature regarding differing results for the fermionic corrections to this process is clarified.Comment: 11 pages, latex, 7 postscript files, some references added, final version to appear in Phys.Lett.

    Kondo effect in a one-electron double quantum dot: Oscillations of the Kondo current in a weak magnetic field

    Full text link
    We present transport measurements of the Kondo effect in a double quantum dot charged with only one or two electrons, respectively. For the one electron case we observe a surprising quasi-periodic oscillation of the Kondo conductance as a function of a small perpendicular magnetic field |B| \lesssim 50mT. We discuss possible explanations of this effect and interpret it by means of a fine tuning of the energy mismatch of the single dot levels of the two quantum dots. The observed degree of control implies important consequences for applications in quantum information processing
    corecore