1,174 research outputs found

    Theory and Application of Dissociative Electron Capture in Molecular Identification

    Get PDF
    The coupling of an electron monochromator (EM) to a mass spectrometer (MS) has created a new analytical technique, EM-MS, for the investigation of electrophilic compounds. This method provides a powerful tool for molecular identification of compounds contained in complex matrices, such as environmental samples. EM-MS expands the application and selectivity of traditional MS through the inclusion of a new dimension in the space of molecular characteristics--the electron resonance energy spectrum. However, before this tool can realize its full potential, it will be necessary to create a library of resonance energy scans from standards of the molecules for which EM-MS offers a practical means of detection. Here, an approach supplementing direct measurement with chemical inference and quantum scattering theory is presented to demonstrate the feasibility of directly calculating resonance energy spectra. This approach makes use of the symmetry of the transition-matrix element of the captured electron to discriminate between the spectra of isomers. As a way of validating this approach, the resonance values for twenty-five nitrated aromatic compounds were measured along with their relative abundance. Subsequently, the spectra for the isomers of nitrotoluene were shown to be consistent with the symmetry-based model. The initial success of this treatment suggests that it might be possible to predict negative ion resonances and thus create a library of EM-MS standards.Comment: 18 pages, 7 figure

    Adaptive intelligence applied to numerical optimisation

    Get PDF
    The article presents modification strategies theoretical comparison and experimental results achieved by adaptive heuristics applied to numerical optimisation of several non-constraint test functions. The aims of the study are to identify and compare how adaptive search heuristics behave within heterogeneous search space without retuning of the search parameters. The achieved results are summarised and analysed, which could be used for comparison to other methods and further investigation

    An Efficient Algorithm for Optimizing Adaptive Quantum Metrology Processes

    Full text link
    Quantum-enhanced metrology infers an unknown quantity with accuracy beyond the standard quantum limit (SQL). Feedback-based metrological techniques are promising for beating the SQL but devising the feedback procedures is difficult and inefficient. Here we introduce an efficient self-learning swarm-intelligence algorithm for devising feedback-based quantum metrological procedures. Our algorithm can be trained with simulated or real-world trials and accommodates experimental imperfections, losses, and decoherence

    Revealing common artifacts due to ferromagnetic inclusions in highly-oriented pyrolytic graphite

    Full text link
    We report on an extensive investigation to figure out the origin of room-temperature ferromagnetism that is commonly observed by SQUID magnetometry in highly-oriented pyrolytic graphite (HOPG). Electron backscattering and X-ray microanalysis revealed the presence of micron-size magnetic clusters (predominantly Fe) that are rare and would be difficult to detect without careful search in a scanning electron microscope in the backscattering mode. The clusters pin to crystal boundaries and their quantities match the amplitude of typical ferromagnetic signals. No ferromagnetic response is detected in samples where we could not find such magnetic inclusions. Our experiments show that the frequently reported ferromagnetism in pristine HOPG is most likely to originate from contamination with Fe-rich inclusions introduced presumably during crystal growth.Comment: 8 pages, 7 figure

    The continuity of the inversion and the structure of maximal subgroups in countably compact topological semigroups

    Full text link
    In this paper we search for conditions on a countably compact (pseudo-compact) topological semigroup under which: (i) each maximal subgroup H(e)H(e) in SS is a (closed) topological subgroup in SS; (ii) the Clifford part H(S)H(S)(i.e. the union of all maximal subgroups) of the semigroup SS is a closed subset in SS; (iii) the inversion inv⁡ ⁣:H(S)→H(S)\operatorname{inv}\colon H(S)\to H(S) is continuous; and (iv) the projection Ï€â€‰âŁ:H(S)→E(S)\pi\colon H(S)\to E(S), Ï€â€‰âŁ:x⟌xx−1\pi\colon x\longmapsto xx^{-1}, onto the subset of idempotents E(S)E(S) of SS, is continuous

    Effect of a Novel Nonviral Gene Delivery of BMP-2 on Bone Healing

    Get PDF
    Background. Gene therapeutic drug delivery approaches have been introduced to improve the efficiency of growth factors at the site of interest. This study investigated the efficacy and safety of a new nonviral copolymer-protected gene vector (COPROG) for the stimulation of bone healing. Methods. In vitro, rat osteoblasts were transfected with COPROG + luciferase plasmid or COPROG + hBMP-2 plasmid. In vivo, rat tibial fractures were intramedullary stabilized with uncoated versus COPROG+hBMP-2-plasmid-coated titanium K-wires. The tibiae were prepared for biomechanical and histological analyses at days 28 and 42 and for transfection/safety study at days 2, 4, 7, 28, and 42. Results. In vitro results showed luciferase expression until day 21, and hBMP-2-protein was measured from day 2 – day 10. In vivo, the local application of hBMP-2-plasmid showed a significantly higher maximum load after 42 days compared to that in the control. The histomorphometric analysis revealed a significantly less mineralized periosteal callus area in the BMP-2 group compared to the control at day 28. The rt-PCR showed no systemic biodistribution of luciferase RNA. Conclusion. A positive effect on fracture healing by nonviral BMP-2 plasmid application from COPROG-coated implants could be shown in this study; however, the effect of the vector may be improved with higher plasmid concentrations. Transfection showed no biodistribution to distant organs and was considered to be safe

    Preserving genetic resources

    Get PDF
    The mission of the U.S. National Plant Germplasm System (NPGS) is to effectively collect, document, preserve, evaluate, enhance, and distribute plant genetic resources for continued improvement in the quality and production of economic crops important to U.S. and world agriculture. Plant genetic resources in the NPGS are made freely available to all bona fide users fo r the benefit of humankind. The active collection is maintained and distributed by 19 national repositories, and the base collection is preserved at the National Seed Storage Laboratory (NSSL), U.S. Department o f Agriculture, Fort Collins, Colorado. The NPGS collections include 40,477 sorghum and 1,507pearl millet accessions. Of the 20,169 sorghum accessions in the base collection at NSSL, 80% are in conventional storage at about -18°C and 20% are in cryostorage in vapor phase above liquid nitrogen at about -16(fC; the pearl millet collection is in conventional storage. The International Crops Research Institute for the Semi-Arid Tropics (ICR1SAT) located at Patancheru, near Hyderabad, India, has assembled a collection o f35,643 sorghum and 21,195 pearl millet accessions, both ICRISAT mandate crops. All these accessions are maintained andpreserved in aluminum cans in the medium-term storage facility at about 4°C and 20% relative humidity. Freshly rejuvenated accessions with at least 90% viability and about 5% seed moisture content are being placed in moisture proof aluminum foil packets that are vacuum sealed and stored in long-term storage at -20°C. For these crops, 17% o f the sorghum collection and 23% o f the pearl millet collection have been transferred to long-term storage

    State Transition Algorithm

    Full text link
    In terms of the concepts of state and state transition, a new heuristic random search algorithm named state transition algorithm is proposed. For continuous function optimization problems, four special transformation operators called rotation, translation, expansion and axesion are designed. Adjusting measures of the transformations are mainly studied to keep the balance of exploration and exploitation. Convergence analysis is also discussed about the algorithm based on random search theory. In the meanwhile, to strengthen the search ability in high dimensional space, communication strategy is introduced into the basic algorithm and intermittent exchange is presented to prevent premature convergence. Finally, experiments are carried out for the algorithms. With 10 common benchmark unconstrained continuous functions used to test the performance, the results show that state transition algorithms are promising algorithms due to their good global search capability and convergence property when compared with some popular algorithms.Comment: 18 pages, 28 figure

    Cosmic-ray strangelets in the Earth's atmosphere

    Full text link
    If strange quark matter is stable in small lumps, we expect to find such lumps, called ``strangelets'', on Earth due to a steady flux in cosmic rays. Following recent astrophysical models, we predict the strangelet flux at the top of the atmosphere, and trace the strangelets' behavior in atmospheric chemistry and circulation. We show that several strangelet species may have large abundances in the atmosphere; that they should respond favorably to laboratory-scale preconcentration techniques; and that they present promising targets for mass spectroscopy experiments.Comment: 28 pages, 4 figures, revtex
    • 

    corecore