4 research outputs found

    The phenomenology of pareidolia in healthy subjects and patients with left- or right-hemispheric stroke

    Get PDF
    Pareidolia are perceptions of recognizable images or meaningful patterns where none exist. In recent years, this phenomenon has been increasingly studied in healthy subjects and patients with neurological or psychiatric diseases. The current study examined pareidolia production in a group of 53 stroke patients and 82 neurologically healthy controls who performed a natural images task. We found a significant reduction of absolute pareidolia production in left- and right-hemispheric stroke patients, with right-hemispheric patients producing overall fewest pareidolic output. Responses were categorized into 28 distinct categories, with ‘Animal’, ‘Human’, ‘Face’, and ‘Body parts' being the most common, accounting for 72% of all pareidolia. Regarding the percentages of the different categories of pareidolia, we found a significant reduction for the percentage of “Body parts” pareidolia in the left-hemispheric patient group as compared to the control group, while the percentage of this pareidolia type was not significantly reduced in right-hemispheric patients compared to healthy controls. These results support the hypothesis that pareidolia production may be influenced by local-global visual processing with the left hemisphere being involved in local and detailed analytical visual processing to a greater extent. As such, a lesion to the right hemisphere, that is believed to be critical for global visual processing, might explain the overall fewest pareidolic output produced by the right-hemispheric patients

    Sleep as a model to understand neuroplasticity and recovery after stroke : observational, perturbational and interventional approaches

    Get PDF
    Our own experiences with disturbances to sleep demonstrate its crucial role in the recovery of cognitive functions. This importance is likely enhanced in the recovery from stroke; both in terms of its physiology and cognitive abilities. Decades of experimental research have highlighted which aspects and mechanisms of sleep are likely to underlie these forms of recovery. Conversely, damage to certain areas of the brain, as well as the indirect effects of stroke, may disrupt sleep. However, only limited research has been conducted which seeks to directly explore this bidirectional link between both the macro and micro-architecture of sleep and stroke. Here we describe a series of semi-independent approaches that aim to establish this link through observational, perturbational, and interventional experiments. Our primary aim is to describe the methodology for future clinical and translational research needed to delineate competing accounts of the current data. At the observational level we suggest the use of high-density EEG recording, combined analysis of macro and micro-architecture of sleep, detailed analysis of the stroke lesion, and sensitive measures of functional recovery. The perturbational approach attempts to find the causal links between sleep and stroke. We promote the use of transcranial magnetic stimulation combined with EEG to examine the cortical dynamics of the peri-infarct stroke area. Translational research should take this a step further using optogenetic techniques targeting more specific cell populations. The interventional approach focuses on how the same clinical and translational perturbational techniques can be adapted to influence long-term recovery of function

    Thalamic influence on slow wave slope renormalization during sleep.

    Get PDF
    OBJECTIVE Slow waves are thought to mediate an overall reduction in synaptic strength during sleep. The specific contribution of the thalamus to this so-called synaptic renormalization is unknown. Thalamic stroke is associated with daytime sleepiness, along with changes to sleep electroencephalography and cognition making it a unique "experiment of nature" to assess the relationship between sleep rhythms, synaptic renormalization, and daytime functions. METHODS Sleep was studied by polysomnography and high-density electroencephalography over 17 nights in patients with thalamic (n = 12) and 15 nights in patients with extra-thalamic (n = 11) stroke. Sleep electroencephalography overnight slow wave slope changes, and their relationship with subjective daytime sleepiness, cognition, and other functional tests were assessed. RESULTS Thalamic and extra-thalamic patients did not differ in terms of age, sleep duration or apnea-hypopnea index. Conversely, overnight slope changes were reduced in a large cluster of electrodes in thalamic compared to extra-thalamic stroke patients. This reduction was related to increased daytime sleepiness. No significant differences were found in other functional tests between the two groups. INTERPRETATION In patients with thalamic stroke a reduction in overnight slow wave slope change and increased daytime sleepiness was found. Sleep- and wake-centered mechanisms for this relationship are discussed. Overall, this study suggests a central role of the thalamus in synaptic renormalization. This article is protected by copyright. All rights reserved
    corecore