4,073 research outputs found
Localized transverse bursts in inclined layer convection
We investigate a novel bursting state in inclined layer thermal convection in
which convection rolls exhibit intermittent, localized, transverse bursts. With
increasing temperature difference, the bursts increase in duration and number
while exhibiting a characteristic wavenumber, magnitude, and size. We propose a
mechanism which describes the duration of the observed bursting intervals and
compare our results to bursting processes in other systems.Comment: 4 pages, 8 figure
Ownership-dependent mating tactics of minor males of the beetle Librodor japonicus (Nitidulidae) with intra-sexual dimorphism of mandibles
Intra-sexual dimorphism is found in the weapons of many male beetles. Different behavioral tactics to access females between major and minor males, which adopt fighting and alternative tactics, respectively, are thought to maintain the male dimorphism. In these species major males have enlarged weapons that they use in fights with rival males. Minor males also have small weapons in some of these species, and it is unclear why these males possess weapons. We examined the hypothesis that minor males might adopt a fighting tactic when their status was relatively high in comparison with that of other males (e.g., ownership of a territory). We observed the behavioral tactics of major and minor males of the beetle Librodor japonicus, whose males have a dimorphism of their mandibles. Major males fought for resources, whereas minor males adopted two status-dependent tactics, fighting and sneaking, to access females, depending on their ownership of a sap site. We suggest that ownership status-dependent mating tactics in minor males may maintain the intra-sexual dimorphism in this beetle.</p
Defect turbulence in inclined layer convection
We report experimental results on the defect turbulent state of undulation
chaos in inclined layer convection of a fluid withPrandtl number .
By measuring defect density and undulation wavenumber, we find that the onset
of undulation chaos coincides with the theoretically predicted onset for
stable, stationary undulations. At stronger driving, we observe a competition
between ordered undulations and undulation chaos, suggesting bistability
between a fixed-point attractor and spatiotemporal chaos. In the defect
turbulent regime, we measured the defect creation, annihilation, entering,
leaving, and rates. We show that entering and leaving rates through boundaries
must be considered in order to describe the observed statistics. We derive a
universal probability distribution function which agrees with the experimental
findings.Comment: 4 pages, 5 figure
Consistent Quantum Counterfactuals
An analysis using classical stochastic processes is used to construct a
consistent system of quantum counterfactual reasoning. When applied to a
counterfactual version of Hardy's paradox, it shows that the probabilistic
character of quantum reasoning together with the ``one framework'' rule
prevents a logical contradiction, and there is no evidence for any mysterious
nonlocal influences. Counterfactual reasoning can support a realistic
interpretation of standard quantum theory (measurements reveal what is actually
there) under appropriate circumstances.Comment: Minor modifications to make it agree with published version. Latex 8
pages, 2 figure
Simultaneous 3D measurement of the translation and rotation of finite size particles and the flow field in a fully developed turbulent water flow
We report a novel experimental technique that measures simultaneously in
three dimensions the trajectories, the translation, and the rotation of finite
size inertial particles together with the turbulent flow. The flow field is
analyzed by tracking the temporal evolution of small fluorescent tracer
particles. The inertial particles consist of a super-absorbent polymer that
renders them index and density matched with water and thus invisible. The
particles are marked by inserting at various locations tracer particles into
the polymer. Translation and rotation, as well as the flow field around the
particle are recovered dynamically from the analysis of the marker and tracer
particle trajectories. We apply this technique to study the dynamics of
inertial particles much larger in size (Rp/{\eta} \approx 100) than the
Kolmogorov length scale {\eta} in a von K\'arm\'an swirling water flow
(R{\lambda} \approx 400). We show, using the mixed (particle/fluid) Eulerian
second order velocity structure function, that the interaction zone between the
particle and the flow develops in a spherical shell of width 2Rp around the
particle of radius Rp. This we interpret as an indication of a wake induced by
the particle. This measurement technique has many additional advantages that
will make it useful to address other problems such as particle collisions,
dynamics of non-spherical solid objects, or even of wet granular matter.Comment: 18 pages, 7 figures, submitted to "Measurement Science and
Technology" special issue on "Advances in 3D velocimetry
Exact-Exchange Kohn-Sham formalism applied to one-dimensional periodic electronic systems
The Exact-Exchange (EXX) Kohn-Sham formalism, which treats exchange
interactions exactly within density-functional theory, is applied to
one-dimensional periodic systems. The underlying implementation does not rely
on specific symmetries of the considered system and can be applied to any kind
of periodic structure in one to three dimensions. As a test system,
-polyacetylene, both in form of an isolated chain and in the bulk
geometry has been investigated. Within the EXX scheme, bandstructures and
independent particle response functions are calculated and compared to
experimental data as well as to data calculated by several other methods.
Compared to results from the local-density approximation, the EXX method leads
to an increased value for the band gap, in line with similar observations for
three-dimensional semiconductors. An inclusion of correlation potentials within
the local density approximation or generalized gradient approximations leads to
only negligible effects in the bandstructure. The EXX band gaps are in good
agreement with experimental data for bulk -polyacetylene. Packing
effects of the chains in bulk -polyacetylene are found to lower the band
gap by about 0.5 eV
Lorentz-covariant quantum mechanics and preferred frame
In this paper the relativistic quantum mechanics is considered in the
framework of the nonstandard synchronization scheme for clocks. Such a
synchronization preserves Poincar{\'e} covariance but (at least formally)
distinguishes an inertial frame. This enables to avoid the problem of a
noncausal transmision of information related to breaking of the Bell's
inequalities in QM. Our analysis has been focused mainly on the problem of
existence of a proper position operator for massive particles. We have proved
that in our framework such an operator exists for particles with arbitrary
spin. It fulfills all the requirements: it is Hermitean and covariant, it has
commuting components and moreover its eigenvectors (localised states) are also
covariant. We have found the explicit form of the position operator and have
demonstrated that in the preferred frame our operator coincides with the
Newton--Wigner one. We have also defined a covariant spin operator and have
constructed an invariant spin square operator. Moreover, full algebra of
observables consisting of position operators, fourmomentum operators and spin
operators is manifestly Poincar\'e covariant in this framework. Our results
support expectations of other authors (Bell, Eberhard) that a consistent
formulation of quantum mechanics demands existence of a preferred frame.Comment: 21 pages, LaTeX file, no figure
Shaping Robust System through Evolution
Biological functions are generated as a result of developmental dynamics that
form phenotypes governed by genotypes. The dynamical system for development is
shaped through genetic evolution following natural selection based on the
fitness of the phenotype. Here we study how this dynamical system is robust to
noise during development and to genetic change by mutation. We adopt a
simplified transcription regulation network model to govern gene expression,
which gives a fitness function. Through simulations of the network that
undergoes mutation and selection, we show that a certain level of noise in gene
expression is required for the network to acquire both types of robustness. The
results reveal how the noise that cells encounter during development shapes any
network's robustness, not only to noise but also to mutations. We also
establish a relationship between developmental and mutational robustness
through phenotypic variances caused by genetic variation and epigenetic noise.
A universal relationship between the two variances is derived, akin to the
fluctuation-dissipation relationship known in physics
- …