4,073 research outputs found

    Localized transverse bursts in inclined layer convection

    Full text link
    We investigate a novel bursting state in inclined layer thermal convection in which convection rolls exhibit intermittent, localized, transverse bursts. With increasing temperature difference, the bursts increase in duration and number while exhibiting a characteristic wavenumber, magnitude, and size. We propose a mechanism which describes the duration of the observed bursting intervals and compare our results to bursting processes in other systems.Comment: 4 pages, 8 figure

    Ownership-dependent mating tactics of minor males of the beetle Librodor japonicus (Nitidulidae) with intra-sexual dimorphism of mandibles

    Get PDF
    Intra-sexual dimorphism is found in the weapons of many male beetles. Different behavioral tactics to access females between major and minor males, which adopt fighting and alternative tactics, respectively, are thought to maintain the male dimorphism. In these species major males have enlarged weapons that they use in fights with rival males. Minor males also have small weapons in some of these species, and it is unclear why these males possess weapons. We examined the hypothesis that minor males might adopt a fighting tactic when their status was relatively high in comparison with that of other males (e.g., ownership of a territory). We observed the behavioral tactics of major and minor males of the beetle Librodor japonicus, whose males have a dimorphism of their mandibles. Major males fought for resources, whereas minor males adopted two status-dependent tactics, fighting and sneaking, to access females, depending on their ownership of a sap site. We suggest that ownership status-dependent mating tactics in minor males may maintain the intra-sexual dimorphism in this beetle.</p

    Defect turbulence in inclined layer convection

    Full text link
    We report experimental results on the defect turbulent state of undulation chaos in inclined layer convection of a fluid withPrandtl number 1\approx 1. By measuring defect density and undulation wavenumber, we find that the onset of undulation chaos coincides with the theoretically predicted onset for stable, stationary undulations. At stronger driving, we observe a competition between ordered undulations and undulation chaos, suggesting bistability between a fixed-point attractor and spatiotemporal chaos. In the defect turbulent regime, we measured the defect creation, annihilation, entering, leaving, and rates. We show that entering and leaving rates through boundaries must be considered in order to describe the observed statistics. We derive a universal probability distribution function which agrees with the experimental findings.Comment: 4 pages, 5 figure

    Consistent Quantum Counterfactuals

    Get PDF
    An analysis using classical stochastic processes is used to construct a consistent system of quantum counterfactual reasoning. When applied to a counterfactual version of Hardy's paradox, it shows that the probabilistic character of quantum reasoning together with the ``one framework'' rule prevents a logical contradiction, and there is no evidence for any mysterious nonlocal influences. Counterfactual reasoning can support a realistic interpretation of standard quantum theory (measurements reveal what is actually there) under appropriate circumstances.Comment: Minor modifications to make it agree with published version. Latex 8 pages, 2 figure

    Simultaneous 3D measurement of the translation and rotation of finite size particles and the flow field in a fully developed turbulent water flow

    Get PDF
    We report a novel experimental technique that measures simultaneously in three dimensions the trajectories, the translation, and the rotation of finite size inertial particles together with the turbulent flow. The flow field is analyzed by tracking the temporal evolution of small fluorescent tracer particles. The inertial particles consist of a super-absorbent polymer that renders them index and density matched with water and thus invisible. The particles are marked by inserting at various locations tracer particles into the polymer. Translation and rotation, as well as the flow field around the particle are recovered dynamically from the analysis of the marker and tracer particle trajectories. We apply this technique to study the dynamics of inertial particles much larger in size (Rp/{\eta} \approx 100) than the Kolmogorov length scale {\eta} in a von K\'arm\'an swirling water flow (R{\lambda} \approx 400). We show, using the mixed (particle/fluid) Eulerian second order velocity structure function, that the interaction zone between the particle and the flow develops in a spherical shell of width 2Rp around the particle of radius Rp. This we interpret as an indication of a wake induced by the particle. This measurement technique has many additional advantages that will make it useful to address other problems such as particle collisions, dynamics of non-spherical solid objects, or even of wet granular matter.Comment: 18 pages, 7 figures, submitted to "Measurement Science and Technology" special issue on "Advances in 3D velocimetry

    Exact-Exchange Kohn-Sham formalism applied to one-dimensional periodic electronic systems

    Full text link
    The Exact-Exchange (EXX) Kohn-Sham formalism, which treats exchange interactions exactly within density-functional theory, is applied to one-dimensional periodic systems. The underlying implementation does not rely on specific symmetries of the considered system and can be applied to any kind of periodic structure in one to three dimensions. As a test system, transtrans-polyacetylene, both in form of an isolated chain and in the bulk geometry has been investigated. Within the EXX scheme, bandstructures and independent particle response functions are calculated and compared to experimental data as well as to data calculated by several other methods. Compared to results from the local-density approximation, the EXX method leads to an increased value for the band gap, in line with similar observations for three-dimensional semiconductors. An inclusion of correlation potentials within the local density approximation or generalized gradient approximations leads to only negligible effects in the bandstructure. The EXX band gaps are in good agreement with experimental data for bulk transtrans-polyacetylene. Packing effects of the chains in bulk transtrans-polyacetylene are found to lower the band gap by about 0.5 eV

    Lorentz-covariant quantum mechanics and preferred frame

    Full text link
    In this paper the relativistic quantum mechanics is considered in the framework of the nonstandard synchronization scheme for clocks. Such a synchronization preserves Poincar{\'e} covariance but (at least formally) distinguishes an inertial frame. This enables to avoid the problem of a noncausal transmision of information related to breaking of the Bell's inequalities in QM. Our analysis has been focused mainly on the problem of existence of a proper position operator for massive particles. We have proved that in our framework such an operator exists for particles with arbitrary spin. It fulfills all the requirements: it is Hermitean and covariant, it has commuting components and moreover its eigenvectors (localised states) are also covariant. We have found the explicit form of the position operator and have demonstrated that in the preferred frame our operator coincides with the Newton--Wigner one. We have also defined a covariant spin operator and have constructed an invariant spin square operator. Moreover, full algebra of observables consisting of position operators, fourmomentum operators and spin operators is manifestly Poincar\'e covariant in this framework. Our results support expectations of other authors (Bell, Eberhard) that a consistent formulation of quantum mechanics demands existence of a preferred frame.Comment: 21 pages, LaTeX file, no figure

    Shaping Robust System through Evolution

    Full text link
    Biological functions are generated as a result of developmental dynamics that form phenotypes governed by genotypes. The dynamical system for development is shaped through genetic evolution following natural selection based on the fitness of the phenotype. Here we study how this dynamical system is robust to noise during development and to genetic change by mutation. We adopt a simplified transcription regulation network model to govern gene expression, which gives a fitness function. Through simulations of the network that undergoes mutation and selection, we show that a certain level of noise in gene expression is required for the network to acquire both types of robustness. The results reveal how the noise that cells encounter during development shapes any network's robustness, not only to noise but also to mutations. We also establish a relationship between developmental and mutational robustness through phenotypic variances caused by genetic variation and epigenetic noise. A universal relationship between the two variances is derived, akin to the fluctuation-dissipation relationship known in physics
    corecore