19 research outputs found

    Classification into two von Mises distributions with unknown mean directions

    Get PDF
    summary:The paper deals with two Mises distributions on the circle with unknown mean directions and a common concentration parameter that is known. The likelihood rule and the plug-in rule are examined. For the statistic of the plug-in rule, the moment generating function is given and a method of obtaining the moments is proposed

    FUME 2.0 – Flexible Universal processor for Modeling Emissions

    Get PDF
    This paper introduces FUME 2.0, an open-source emission processor for air quality modeling, and documents the software structure, capabilities, and sample usage. FUME provides a customizable framework for emission preparation tailored to user needs. It is designed to work with heterogeneous emission inventory data, unify them into a common structure, and generate model-ready emissions for various chemical transport models (CTMs). Key features include flexibility in input data formats, support for spatial and temporal disaggregation, chemical speciation, and integration of external models like MEGAN. FUME employs a modular Python interface and PostgreSQL/PostGIS backend for efficient data handling. The workflow comprises data import, geographical transformation, chemical and temporal disaggregation, and output generation steps. Outputs for mesoscale CTMs CMAQ, CAMx, and WRF-Chem and the large-eddy-simulation model PALM are implemented along with a generic NetCDF format. Benchmark runs are discussed on a typical configuration with cascading domains, with import and preprocessing times scaling near-linearly with grid size. FUME facilitates air quality modeling from continental to regional and urban scales by enabling effective processing of diverse inventory datasets.</p

    Sensitivity analysis of the PALM model system 6.0 in the urban environment

    Get PDF
    Sensitivity of the PALM model 6.0 with respect to land-surface and building properties is tested in a real urban environment in the vicinity of a typical crossroads in a densely built-up residential area in Prague, Czech Republic. The turbulence-resolving PALM is able to simulate the urban boundary layer flow for realistic setups. Besides an accurate representation of the relevant physical processes, the model performance also depends on the input data describing the urban setup, namely the building and land-surface properties. Two types of scenario are employed. The first one is the synthetic scenarios altering mainly surface and material parameters such as albedo, emissivity or wall conductivity, testing sensitivity of the model simulations to potentially erroneous input data. Second, urbanistic-type scenarios are analysed, in which commonly considered urban heat island mitigation measures such as greening of the streets or changing surface materials are applied in order to assess the limits of the effects of a particular type of scenario. For the synthetic scenarios, surface parameters used in radiation balance equations are found to be the most sensitive overall followed by the volumetric heat capacity and thermal conductivity of walls. Other parameters show a limited average effect; however, some can still be significant during some parts of the day, such as surface roughness in the morning hours. The second type, the urbanistic scenarios, shows urban vegetation to be the most effective measure, especially when considering both physical and biophysical temperature indicators. The influence of both types of scenario was also tested for air quality, specifically PM2.5 dispersion, which generally shows opposite behaviour to that of thermal indicators; i.e. improved thermal comfort brings deterioration of PM2.5 concentrations. © 2021 Michal Belda et al

    A generalization of Wishart density for the case when the inverse of the covariance matrix is a band matrix

    Get PDF
    summary:In a multivariate normal distribution, let the inverse of the covariance matrix be a band matrix. The distribution of the sufficient statistic for the covariance matrix is derived for this case. It is a generalization of the Wishart distribution. The distribution may be used for unbiased density estimation and construction of classification rules
    corecore