1,032 research outputs found
Non-intrinsic origin of the Colossal Dielectric Constants in CaCu3Ti4O12
The dielectric properties of CaCu3Ti4O12, a material showing colossal values
of the dielectric constant, were investigated in a broad temperature and
frequency range extending up to 1.3 GHz. A detailed equivalent circuit analysis
of the results and two crucial experiments, employing different types of
contacts and varying sample thickness, provide clear evidence that the
apparently high values of the dielectric constant in CaCu3Ti4O12 are
non-intrinsic and due to electrode polarization effects. The intrinsic
properties of CaCu3Ti4O12 are characterized by charge transport via hopping of
localized charge carriers and a relatively high dielectric constant of the
order of 100.Comment: 4 pages, 4 figure
Particle interactions and lattice dynamics: Scenarios for efficient bidirectional stochastic transport?
Intracellular transport processes driven by molecular motors can be described
by stochastic lattice models of self-driven particles. Here we focus on
bidirectional transport models excluding the exchange of particles on the same
track. We explore the possibility to have efficient transport in these systems.
One possibility would be to have appropriate interactions between the various
motors' species, so as to form lanes. However, we show that the lane formation
mechanism based on modified attachment/detachment rates as it was proposed
previously is not necessarily connected to an efficient transport state and is
suppressed when the diffusivity of unbound particles is finite. We propose
another interaction mechanism based on obstacle avoidance that allows to have
lane formation for limited diffusion. Besides, we had shown in a separate paper
that the dynamics of the lattice itself could be a key ingredient for the
efficiency of bidirectional transport. Here we show that lattice dynamics and
interactions can both contribute in a cooperative way to the efficiency of
transport. In particular, lattice dynamics can decrease the interaction
threshold beyond which lanes form. Lattice dynamics may also enhance the
transport capacity of the system even when lane formation is suppressed.Comment: 25 pages, 17 figures, 2 table
Random l-colourable structures with a pregeometry
We study finite -colourable structures with an underlying pregeometry. The
probability measure that is used corresponds to a process of generating such
structures (with a given underlying pregeometry) by which colours are first
randomly assigned to all 1-dimensional subspaces and then relationships are
assigned in such a way that the colouring conditions are satisfied but apart
from this in a random way. We can then ask what the probability is that the
resulting structure, where we now forget the specific colouring of the
generating process, has a given property. With this measure we get the
following results: 1. A zero-one law. 2. The set of sentences with asymptotic
probability 1 has an explicit axiomatisation which is presented. 3. There is a
formula (not directly speaking about colours) such that, with
asymptotic probability 1, the relation "there is an -colouring which assigns
the same colour to and " is defined by . 4. With asymptotic
probability 1, an -colourable structure has a unique -colouring (up to
permutation of the colours).Comment: 35 page
Transport, magnetic, thermodynamic and optical properties in Ti-doped Sr_2RuO_4
We report on electrical resistivity, magnetic susceptibility and
magnetization, on heat capacity and optical experiments in single crystals of
Sr_2Ru_(1-x)Ti_xO_4. Samples with x=0.1 and 0.2 reveal purely semiconducting
resistivity behavior along c and the charge transport is close to localization
within the ab-plane. A strong anisotropy in the magnetic susceptibility appears
at temperatures below 100 K. Moreover magnetic ordering in c-direction with a
moment of order 0.01 mu_B/f.u. occurs at low temperatures. On doping the
low-temperature linear term of the heat capacity becomes reduced significantly
and probably is dominated by spin fluctuations. Finally, the optical
conductivity reveals the anisotropic character of the dc resistance, with the
in-plane conductance roughly following a Drude-type behavior and an insulating
response along c
A model for bidirectional traffic of cytoskeletal motors
We introduce a stochastic lattice gas model including two particle species
and two parallel lanes. One lane with exclusion interaction and directed motion
and the other lane without exclusion and unbiased diffusion, mimicking a
micotubule filament and the surrounding solution. For a high binding affinity
to the filament, jam-like situations dominate the system's behaviour. The
fundamental process of position exchange of two particles is approximated. In
the case of a many-particle system, we were able to identify a regime in which
the system is rather homogenous presenting only small accumulations of
particles and a regime in which an important fraction of all particles
accumulates in the same cluster. Numerical data proposes that this cluster
formation will occur at all densities for large system sizes. Coupling of
several filaments leads to an enhanced cluster formation compared to the
uncoupled system, suggesting that efficient bidirectional transport on
one-dimensional filaments relies on long-ranged interactions and track
formation.Comment: 20 pages, 9 figure
Metal-to-insulator transition and magnetic ordering in CaRu_{1-x}Cu_xO_3
CaRuO_3 is perovskite with an orthorhombic distortion and is believed to be
close to magnetic ordering. Magnetic studies of single crystal and
polycrystalline CaRu_{1-x}Cu_xO_3 (0\le x \le 15 at.%Cu) reveal that
spin-glass-like transition develops for x\le 7 at.%Cu and obtained value for
effective magnetic moment p_{eff}=3.55 mu_B for x=5 at.% Cu, single crystal,
indicates presence of Ru^{5+}. At higher Cu concentrations more complex
magnetic behaviors are observed. Electrical resistivity measured on
polycrystalline samples shows metal-to-insulator transition (MIT) at 51 K for
only 2 at.% Cu. Charge compensation, which is assumed to be present upon
Cu^{2+/3+} substitution, induces appearance of Ru^{5+} and/or creation of
oxygen vacancies in crystal structure. Since the observed changes in physical
properties are completely attributable to the charge compensation, they cannot
be related to behaviors of pure compound where no such mechanism is present.
This study provides the criterion for "good" chemical probes for studying
Ru-based perovskites.Comment: 12 pages, 7 figure
Descriptive Complexity of Deterministic Polylogarithmic Time and Space
We propose logical characterizations of problems solvable in deterministic
polylogarithmic time (PolylogTime) and polylogarithmic space (PolylogSpace). We
introduce a novel two-sorted logic that separates the elements of the input
domain from the bit positions needed to address these elements. We prove that
the inflationary and partial fixed point vartiants of this logic capture
PolylogTime and PolylogSpace, respectively. In the course of proving that our
logic indeed captures PolylogTime on finite ordered structures, we introduce a
variant of random-access Turing machines that can access the relations and
functions of a structure directly. We investigate whether an explicit predicate
for the ordering of the domain is needed in our PolylogTime logic. Finally, we
present the open problem of finding an exact characterization of
order-invariant queries in PolylogTime.Comment: Submitted to the Journal of Computer and System Science
Spontaneous symmetry breaking in a two-lane model for bidirectional overtaking traffic
First we consider a unidirectional flux \omega_bar of vehicles each of which
is characterized by its `natural' velocity v drawn from a distribution P(v).
The traffic flow is modeled as a collection of straight `world lines' in the
time-space plane, with overtaking events represented by a fixed queuing time
tau imposed on the overtaking vehicle. This geometrical model exhibits platoon
formation and allows, among many other things, for the calculation of the
effective average velocity w=\phi(v) of a vehicle of natural velocity v.
Secondly, we extend the model to two opposite lanes, A and B. We argue that the
queuing time \tau in one lane is determined by the traffic density in the
opposite lane. On the basis of reasonable additional assumptions we establish a
set of equations that couple the two lanes and can be solved numerically. It
appears that above a critical value \omega_bar_c of the control parameter
\omega_bar the symmetry between the lanes is spontaneously broken: there is a
slow lane where long platoons form behind the slowest vehicles, and a fast lane
where overtaking is easy due to the wide spacing between the platoons in the
opposite direction. A variant of the model is studied in which the spatial
vehicle density \rho_bar rather than the flux \omega_bar is the control
parameter. Unequal fluxes \omega_bar_A and \omega_bar_B in the two lanes are
also considered. The symmetry breaking phenomenon exhibited by this model, even
though no doubt hard to observe in pure form in real-life traffic, nevertheless
indicates a tendency of such traffic.Comment: 50 pages, 16 figures; extra references adde
Frameworks for logically classifying polynomial-time optimisation problems.
We show that a logical framework, based around a fragment of existential second-order logic formerly proposed by others so as to capture the class of polynomially-bounded P-optimisation problems, cannot hope to do so, under the assumption that P â NP. We do this by exhibiting polynomially-bounded maximisation and minimisation problems that can be expressed in the framework but whose decision versions are NP-complete. We propose an alternative logical framework, based around inflationary fixed-point logic, and show that we can capture the above classes of optimisation problems. We use the inductive depth of an inflationary fixed-point as a means to describe the objective functions of the instances of our optimisation problems
- âŠ