10 research outputs found

    Lower bounds on the dilation of plane spanners

    Full text link
    (I) We exhibit a set of 23 points in the plane that has dilation at least 1.43081.4308, improving the previously best lower bound of 1.41611.4161 for the worst-case dilation of plane spanners. (II) For every integer n≥13n\geq13, there exists an nn-element point set SS such that the degree 3 dilation of SS denoted by δ0(S,3) equals 1+3=2.7321…\delta_0(S,3) \text{ equals } 1+\sqrt{3}=2.7321\ldots in the domain of plane geometric spanners. In the same domain, we show that for every integer n≥6n\geq6, there exists a an nn-element point set SS such that the degree 4 dilation of SS denoted by δ0(S,4) equals 1+(5−5)/2=2.1755…\delta_0(S,4) \text{ equals } 1 + \sqrt{(5-\sqrt{5})/2}=2.1755\ldots The previous best lower bound of 1.41611.4161 holds for any degree. (III) For every integer n≥6n\geq6 , there exists an nn-element point set SS such that the stretch factor of the greedy triangulation of SS is at least 2.02682.0268.Comment: Revised definitions in the introduction; 23 pages, 15 figures; 2 table

    Geometric Dilation of Geometric Networks

    No full text

    EMBEDDING POINT SETS INTO PLANE GRAPHS OF SMALL DILATION

    No full text
    Let S be a set of points in the plane. What is the minimum possible dilation of all plane graphs that contain S? Even for a set S as simple as five points evenly placed on the circle, this question seems hard to answer; it is not even clear if there exists a lower bound> 1. In this paper we provide the first upper and lower bounds for the embedding problem. 1. Each finite point set can be embedded into the vertex set of a finite triangulation of dilation ≤ 1.1247. 2. Each embedding of a closed convex curve has dilation ≥ 1.00157. 3. Let P be the plane graph that results from intersecting n infinite families of equidistant, parallel lines in general position. Then the vertex set of P has dilation ≥ 2 / √ 3 ≈ 1.1547

    A fast algorithm for approximating the detour of a polygonal chain

    No full text
    Let C be a simple(1) polygonal chain of n edges in the plane, and let p and q be two arbitrary points on C. The detour of C on (p, q) is defined to be the length of the subchain of C that connects p with q, divided by the Euclidean distance between p and q. Given an epsilon >0, we compute in time O((1)/(epsilon) n log n) a pair of points on which the chain makes a detour at least 1/(1 + epsilon) times the maximum detour. (C) 2003 Elsevier B.V. All rights reserved

    Computing the Maximum Detour of a Plane Graph in Subquadratic Time

    Get PDF
    Let G be a plane graph where each edge is a line segment. We consider the problem of computing the maximum detour of G, defined as the maximum over all pairs of distinct points p and q of G of the ratio between the distance between p and q in G and the distance |pq|. The fastest known algorithm for this problem has Θ(n 2) running time where n is the number of vertices. We show how to obtain O(n 3/2 log 3 n) expected running time. We also show that if G has bounded treewidth, its maximum detour can be computed in O(n log 3 n) expected time

    On the Geometric Dilation of Finite Point Sets

    No full text
    Let G be an embedded planar graph whose edges may be curves. For two arbitrary points of G, we can compare the length of the shortest path in G connecting them against their Euclidean distance

    Dilation of Geometric Networks

    No full text
    corecore