
u n i ve r s i t y o f co pe n h ag e n

Computing the Maximum Detour of a Plane Graph in Subquadratic Time

Wulff-Nilsen, Christian

Publication date:
2008

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Wulff-Nilsen, C. (2008). Computing the Maximum Detour of a Plane Graph in Subquadratic Time. København:
Department of Computer Science, University of Copenhagen.

Download date: 07. Apr. 2020

Dept. of Computer Science
University of Copenhagen • Universitetsparken 1

DK-2100 Copenhagen • Denmark

Computing the Maximum Detour of a Plane
Graph in Subquadratic Time

Christian Wulff-Nilsen

Technical Report no. 08-07
ISSN: 0107-8283

Computing the Maximum Detour of a Plane

Graph in Subquadratic Time

Christian Wulff-Nilsen ∗

June 25 2008

Abstract

Let G be a plane graph where each edge is a line segment. We
consider the problem of computing the maximum detour of G, de-
fined as the maximum over all pairs of distinct points p and q of G

of the ratio between the distance between p and q in G and the dis-
tance |pq|. The fastest known algorithm for this problem has Θ(n2)
running time where n is the number of vertices. We show how to
obtain O(n3/2 log3 n) expected running time. We also show that if
G has bounded treewidth, its maximum detour can be computed in
O(n log3 n) expected time.

1 Introduction

Given a geometric graph G, its stretch factor (or dilation) is the maximum
over all pairs of distinct vertices u and v of the ratio between the distance
between u and v in G and the Euclidean distance |uv| between u and v.

A spanner is a network with small stretch factor. Spanners that keep
other cost measures low, such as size, weight, degree, and diameter, are
important structures in areas such as VLSI design, distributed computing,
and robotics. Proving the existence of spanners that simultaneously keep
several cost measures low and efficiently computing such spanners for a given

∗Department of Computer Science, University of Copenhagen, koolooz@diku.dk,
http://www.diku.dk/~koolooz/

1

set of vertices is an active area of research [2, 9]. For more on spanners, see
surveys [6, 12], and the book by Narasimhan and Smid [11].

An interesting dual problem is the following: given a geometric graph,
compute its stretch factor. A related problem which we consider in this paper
is that of computing the maximum detour of a plane graph, which is defined
like stretch factor except that the maximum is taken over all pairs of distinct
points of the graph, not just the vertices.

If the graph is planar then its stretch factor can be computed in Θ(n2)
time, where n is the number of vertices, by applying the APSP algorithm
by Frederickson [7]. This bound also holds for the problem of computing
the maximum detour of a plane graph [1]. It is an open problem whether
subquadratic time algorithms exist.

For more special types of graphs, faster algorithms are known. If the
graph is a path, its stretch factor and maximum detour can be computed in
O(n logn) expected time and if the graph is a tree or a cycle, its stretch factor
and maximum detour can be computed in O(n log2 n) expected time [1].
Using parametric search gives O(n polylog n) worst-case time algorithms for
these special types of graphs. Also, if the graph has bounded treewidth k,
its stretch factor can be computed in O(n logk+1 n) expected time [3].

In this paper, we show how to compute the maximum detour of a plane
graph with n vertices in O(n3/2 log3 n) expected time, thereby solving the
open problem of whether a subquadratic time algorithm exists for this prob-
lem. We also show that if the graph has bounded treewidth, its maximum
detour can be computed in O(n log3 n) expected time.

The organization of the paper is as follows. In Section 2, we give various
definitions and introduce some notation. In Section 3, we make use of the
separator theorem by Lipton and Tarjan which enables us to apply the divide-
and-conquer paradigm to the input graph. We define colourings of points of
a face of the graph in Section 4, show some properties of these colourings
and how to efficiently compute them. In Sections 5 and 6, we show how the
colourings give an efficient way of computing the maximum detour between
points on a face of the graph and this in turn gives an efficient algorithm for
computing the maximum detour of the entire graph. In Section 7, we apply
the same ideas to plane graphs with bounded treewidth. Finally, we make
some concluding remarks in Section 8.

2

2 Definitions and Notation

Let G = (V, E) be a plane graph where each edge is a line segment and let
PG be the set of points of G (vertices as well as interior points of edges).
Given two points p, q ∈ PG, we define dG(p, q) as the length of a shortest
path in G between p and q, where the length of a path is measured as the
sum of the Euclidean lengths of the (parts of) edges on this path. If there
is no such path, we define dG(p, q) = ∞. If p 6= q then the detour δG(p, q)
between p and q (in G) is defined as the ratio dG(p, q)/|pq|. The maximum
detour δG of G is the maximum of this ratio over all pairs of distinct points
of PG.

Where appropriate, we will regard a plane graph as the set of points
belonging to the graph. So for instance, if G and H are plane graphs then
G ∩ H is the set of points belonging to both G and H . If well-defined, we
will regard the resulting point set as a graph.

For a graph G, we let |G| denote its size, i.e. the number of vertices plus
the number of edges in G. Given two subsets P1 and P2 of the set PG of
points of G, we define

δG(P1, P2) = max
p∈P1,q∈P2,p 6=q

δG(p, q)

If p is a point of G and P ⊆ PG, we write δG(p, P) = δG(P, p) instead of
δG({p}, P) and we write δG(P) as a shorthand for δG(P, P). We extend these
definitions to subgraphs, edges, and vertices by regarding them as sets of
points.

Given paths P = p1 → p2 → . . . → pr and Q = q1 → q2 → . . . → qs,
where pr = q1, we let PQ denote the combined path p1 → p2 → . . . →
pr−1 → q1 → q2 → . . . → qs. For a vertex v, we let v → P denote the path
v → p1 → p2 → . . .→ pr.

3 Separating the Problem

In all the following, let G = (V, E) be an n-vertex plane graph in which edges
are line segments. We seek to compute δG in O(n3/2 log3 n) expected time.
We will assume that G is connected since otherwise, the problem is trivial.

To compute δG, we apply the divide-and-conquer paradigm. In this sec-
tion, we separate G into two smaller graphs, GA and GB, of roughly the same

3

size. We recursively compute δG(GA) and δG(GB) and in Section 5, we show
how to efficiently obtain the maximum detour δG(GA, GB).

To separate our problem, we use the separator theorem of Lipton and
Tarjan [10]. This gives us, in O(n) time, a partition of V into three sets, A,
B, and P , such that

1. no edge joins a vertex in A with a vertex in B,

2. neither A nor B contains more than n/2 vertices, and

3. P contains no more than 2
√

2

1−
√

2/3

√
n vertices.

We refer to vertices of P as portals. In all the following, we let k denote the
number of portals and let p1, . . . , pk denote the portals.

Having found this partition, we compute and store shortest path lengths
from each portal to each vertex of V . This can be done in O(n3/2 log n) time
using Dijkstra’s SSSP algorithm for each portal.

Let GA be the subgraph of G induced by A∪P and let GB be the subgraph
of G induced by B ∪ P . We construct GA and GB and recursively compute
δG(GA) and δG(GB). Clearly,

δG = max{δG(GA), δG(GB), δG(GA, GB)}.

In the following, we deal with the problem of computing δG(GA, GB) and in
Section 6, we show how to recursively compute δG(GA) and δG(GB).

We will need the following lemma which is a generalization of a result
in [5] (we omit the proof since it is virtually identical to that in [5]).

Lemma 1. Maximum detour δG is achieved by a pair of co-visible points.

This result allows us to consider only detours between pairs of points
of the same face of G. In all the following, let f be a face of G, let fA =
f ∩ GA, and let fB = f ∩ GB. We will show how to compute δG(fA, fB) in
O(|f |k log2 n) expected time. From this it will follow that δG(GA, GB) can
be found in O(n3/2 log2 n) expected time.

We will assume that f is an internal face of G. The external face is dealt
with in a similar way. We also assume that fA and fB do not share any edges
since any edge e shared by them must have portals as both endpoints and
the detours from points in e to all points in G will be considered in the two

4

recursive calls that compute δG(GA) and δG(GB), respectively. Hence, we
may disregard e when computing δG(fA, fB).

Assume for now that f is simple. The case where f is non-simple is
considered in Section 5.3.

4 Colouring Points

We now define colourings of points of f . As we shall see in Section 5, these
colourings will prove helpful when computing δG(fA, fB).

Face f is defined by a simple cycle v1 → v2 → . . .→ vnf
→ v1 such that

the interior of f is to the left as we walk in the direction specified by the
vertices.

For a point p ∈ f , we let df(p) denote the Euclidean length of the path
from v1 to p that visits vertices in the order specified above. We define an
order <f

v1
of the set of points of f as follows. For two points p and q of f ,

p <f
v1

q if and only if df(p) < df(q). Order p >f
v1

q is defined in a similar
way. In the following, we assume that the sum of lengths of all edges in f
and df (vi) for all vi ∈ f are precomputed.

By starting the walk in any other vertex vi of f , we can similarly define
orders <f

vi
and >f

vi
. It is easy to see that determining whether e.g. p <f

vi
q

holds for any points p, q ∈ f can be done in constant time using the above
precomputed values. Where appropriate, we will regard the points of f (or fA

or fB) occuring between two points w.r.t. order <f
vi

as an interval of points.
In the following, let a be a vertex in fA and let a′ ∈ f ∩V be its successor

w.r.t. <f
a. We now consider associating with a a colouring of points in fB

using colours c1, . . . , ck. A point p ∈ fB is given colour ci if portal pi is on
a shortest path in G from a to p. In case of ties, pick the colour such that
the corresponding portal has minimum distance to a in G. In case of further
ties, pick the colour with the smaller index. We let ca(p) denote the colour
assigned to p.

We will show that colours occur in intervals as we walk around fB with
each colour assigned to at most one interval. Furthermore, we will show that
the order of these intervals is induced by an order of the portals which we
define next.

Let u0 and u1 be distinct vertices of G connected by an edge and consider
a portal pi. Choose edge (u1, u2) ∈ E such that u2 is on a shortest path from
u1 to pi and such that u0 → u1 → u2 makes the sharpest possible left turn

5

at u1 (if a left turn is not possible we regard the least possible right turn as
a sharpest possible left turn and we regard a turn of angle π as a left turn of
angle π).

Repeat this procedure by picking, for j = 3, . . . , r, an edge (uj−1, uj) such
that uj is on a shortest path from uj−1 to pi and such that uj−2 → uj−1 → uj

makes the sharpest possible left turn at uj−1; here, r is the smallest index
such that uj = pi. The resulting path u1 → u2 → . . . → ur is uniquely

defined and is a shortest path from u1 to pi. We denote it by
←−
Pi(u0, u1). We

define
←−
Pi

′(u0, u1) = u0 →
←−
Pi(u0, u1). In the following, we will write

←−
Pi resp.←−

P ′
i as a shorthand for

←−
Pi(a

′, a) resp.
←−
P ′

i (a
′, a), where a and a′ are defined as

above.
For two distinct portals pi and pj we write pi ≺f

a pj if pi ∈
←−
Pj or if

←−
P ′

i

makes a sharper left turn than
←−
P ′

j at some shared interior vertex.

Lemma 2. If paths
←−
Pi and

←−
Pj split at a vertex v they cannot meet after v.

Proof. Suppose the lemma does not hold. Let w be a vertex where
←−
Pi and←−

Pj meet after v. Assume w.l.o.g. that
←−
Pi makes a sharper left turn at v than←−

Pj. Replacing the subpath of
←−
Pj from v to w by the subpath of

←−
Pi from v

to w gives a shortest path from a to pj but this contradicts the assumption

that
←−
P ′

j makes the sharpest possible left turn at v.

Lemma 3. The relation ≺f
a above is a strict total order of the portals.

Proof. Let pi1 , pi2, and pi3 be three distinct portals. Clearly, pi1 ≺f
a pi2 or

pi2 ≺f
a pi1, showing that the relation ≺f

a is total.
We need to show that pi1 ≺f

a pi2 and pi2 ≺f
a pi1 cannot both hold and we

need to show transitivity: if pi1 ≺f
a pi2 and pi2 ≺f

a pi3 then pi1 ≺f
a pi3 .

To show the first part, suppose for the sake of contradiction that pi1 ≺f
a pi2

and pi2 ≺f
a pi1 . Then we cannot have pi1 ∈

←−
Pi2 and we cannot have pi2 ∈

←−
Pi1 .

Consider the first vertex v at which paths
←−
Pi1 and

←−
Pi2 split. Then they cannot

meet after v by Lemma 2. But this implies that one of the two paths
←−
Pi′

1

and
←−
Pi′

2
cannot make a sharper left turn than the other path at any shared

interior vertex, a contradiction.
To show transitivity, suppose pi1 ≺f

a pi2 and pi2 ≺f
a pi3 . We need to show

that either pi1 ∈
←−
P i3 or that

←−
Pi1

′ makes a sharper left turn than
←−
P ′

i3
at some

interior vertex of
←−
P ′

i3
.

6

(i) (ii) (iii) (iv) (v) (vi)
a

pi1

pi2

pi3

pi3

pi1 pi3

pi2

a
v

pi1

pi2

a

v

v

a

pi1

pi3

pi2

v

wa

pi1
pi2

pi3

a

w
v

pi1

pi2
pi3

Figure 1: The six cases considered in Lemma 3.

Assume first that pi1 ∈
←−
Pi2. If pi2 ∈

←−
Pi3 then pi1 ∈

←−
Pi3 (Figure 1(i)). If

pi2 /∈ ←−Pi3 then
←−
Pi2

′ makes a sharper left turn than
←−
Pi3

′ at some interior vertex

v of
←−
Pi3

′. If v ∈ ←−Pi1 \ {pi1} (Figure 1(ii)) then
←−
Pi1

′ makes a sharper left turn

than
←−
Pi3

′ at v. And if v /∈ ←−Pi1 \ {pi1} (Figure 1(iii)) then pi1 ∈
←−
Pi3. In all

cases, pi1 ≺f
a pi3 .

Now, assume that pi1 /∈ ←−Pi2 . Then
←−
Pi1

′ makes a sharper left turn than
←−
Pi2

′

at some interior vertex v of
←−
Pi2

′. If pi2 ∈
←−
Pi3(Figure 1(iv)) then

←−
Pi1

′ makes a

sharper left turn than
←−
Pi3

′ at v. If pi2 /∈ ←−Pi3 then let w be a vertex such that←−
Pi2

′ makes a sharper left turn than
←−
Pi3

′ at w. If w ∈ ←−Pi1 (Figure 1(v)) then←−
Pi1

′ makes a sharper left turn than
←−
Pi3

′ at w. And if w /∈ ←−Pi1 (Figure 1(vi))

then
←−
Pi1

′ makes a sharper left turn than
←−
Pi3

′ at v. So again, pi1 ≺f
a pi3.

We now show the relation between the order ≺f
a of portals and the order

<f
a of vertices in fB.

Theorem 1. Let p and q be two distinct points of fB and assume that ca(p) =
ci and ca(q) = cj, i 6= j. Then pi ≺f

a pj if and only if p <f
a q.

Proof. By symmetry, it is enough to show that if pi ≺f
a pj then p <f

a q.

So assume that pi ≺f
a pj. Since ca(q) = cj, we have pi /∈ ←−Pj . It follows

that there is a vertex v at which
←−
Pi and

←−
Pj split and

←−
P ′

i makes a sharper left

turn at v than
←−
Pj

′. By Lemma 2, the two paths do not meet again after v.

In particular,
←−
Pi does not cross

←−
Pj, see Figure 2.

Let Pp be a shortest path from pi to p. Then Pp cannot intersect
←−
Pj

since then pi and pj would both be on a shortest path from a to q with
dG(a, pi) < dG(a, pj), contradicting the assumption that ca(q) = cj.

7

a
a′

pq

f

v

pi
Pp

pj

Pq

a
a′

pq

f

pj

piPp

Pq

v

a
a′

pq

f

pi

pj

Pq

Pp

v

Figure 2: The possible situations in the proof of Theorem 1 when pi ≺f
a pj.

Let Pq be a shortest path from pj to q. Then
←−
Pi cannot intersect Pq

since otherwise, pi and pj would both be on a shortest path from a to p with
dG(a, pj) < dG(a, pi), contradicting the assumption that ca(p) = ci.

Furthermore, Pq cannot intersect Pp. For assume it did. Then there would
be a shortest path from a to p through pj and a shortest path from a to q
through pi. If dG(a, pi) < dG(a, pj) then ca(q) 6= cj and if dG(a, pj) < dG(a, pi)
then ca(p) 6= ci. Hence, dG(a, pi) = dG(a, pj). But then i < j would imply
ca(q) 6= cj and i > j would imply ca(p) 6= ci. This contradicts the colours
assigned to p and q.

It follows from the above that paths
←−
PiPp and

←−
PjPq do not intersect except

in the vertices they share until reaching v, see Figure 2. This implies that
p <f

a q, showing the theorem.

Corollary 1. Interval fB can be split up into O(k) sub-intervals such that
points in the same sub-interval are assigned the same colour w.r.t. vertex
a ∈ fA.

If the sub-intervals of Corollary 1 are picked such that they have maximal
size, we refer to them as colour intervals of a.

We now show how the colour intervals of a can be computed efficiently,
after some preprocessing.

Lemma 4. The order of colour intervals of a can be computed in O(k log2 n)
time assuming O(kn log n) time for preprocessing. The preprocessing step is
independent of a and f .

Proof. We will prove the lemma by presenting a data structure that, given
distinct portals pi and pj, determines whether pi ≺f

a pj and does so for any

8

pi

e

e1

π3(e, i)

π1(e, i)

π0(e, i)

π1(e1, i)

π2(e, i)

π2(e2, i)

e2

e0
π0(e0, i)

e3

Figure 3: Example with π-pointers from edge e to edges e0 = π0(e, i), e1 =

π1(e, i), e2 = π2(e, i), and e3 = π3(e, i) on
←−
Pi(e). Note that e1 = π0(π0(e, i), i),

e2 = π1(π1(e, i), i), and e3 = π2(π2(e, i), i). Here, je = 3.

a and f . We will show how to construct this data structure in O(kn logn)
time such that it can determine whether pi ≺f

a pj in O(logn) time. This will
allow us to sort the portals according to ≺f

a in time O(k log2 n) time using a
sorting algorithm like merge or heap sort since such an algorithm performs
O(k log k) comparisons. This result together with Theorem 1 will show the
lemma.

We first show how to construct the data structure. In the following, let
E ′ be the set of directed edges obtained by regarding each edge of E as two
oppositely directed edges.

With each edge e = (u, v) ∈ E ′ and each portal pi, we associate pointers

πj(e, i), j = 0, . . . , je. Pointer πj(e, i) points to the edge ej of
←−
Pi(e) such that

the number of edges between e and ej in
←−
Pi(e) is 2j − 1, see Figure 3. Here,

je is the largest j such that ej exists. Note that je = O(logn) so the total
number of pointers over all edges e and all portals pi is O(kn log n).

Suppose we are given these pointers. Then for any edge e and any portals
pi and pj , binary search allows us to determine, in O(log n) time, the vertex

at which
←−
Pi(e) and

←−
Pj(e) split. If they do not split, binary search will also

detect this and determine whether pi ∈
←−
Pj(e) or pj ∈

←−
Pi(e). From this it

follows that we can determine whether pi ≺f
a pj in O(log n) time, given these

pointers.
We now show how to construct the pointers in O(kn log n) time. More

9

specifically, given a portal pi, we show how to compute pointers πj(e, i),
e ∈ E, j = 1, . . . , je, in a total of O(n log n) time.

For each edge (u, v) of E ′, we colour it white if a shortest path from u
to pi goes through v, that is, if dG(u, pi) = |uv| + dG(v, pi). Otherwise, we
colour it black.

Now, for each vertex v of G, we consider the edges of E ′ starting or ending
in v in counter-clockwise order. For each edge (u, v) ending in v, we add a
pointer to the previous (in the counter-clockwise order) white edge (v, w)
that starts in v. Note that (v, w) is the edge satisfying that u → v → w
makes the sharpest possible left turn such that (v, w) is on a shortest path
in G from v to pi.

Next, we consider the edges of E ′ in some order e1, . . . , e|E′|. For edge e1 =

(u1, v1), we compute
←−
Pi(e1) by starting in v1 and then computing subsequent

vertices using the pointers just added. We colour e1 red and as we visit the

edges of
←−
Pi(e1), we colour them red as well.

We then compute pointers πj(e, i) for each edge e ∈ ←−P ′
i (e1) and for each

j = 0, . . . , je. Below, we show how to do this efficiently.
For edge ej, j > 1, we do exactly the same as for e1 except that we stop

when reaching a red edge. All visited edges including ej are coloured red and
π-pointers are computed for each of these edges.

The above algorithm is correct since it computes π-pointers for all edges.
Its running time, excluding the time to compute π-pointers, is O(n logn).
To see this, note that sorting edges counter-clockwise for each vertex takes a
total of O(n log n) time. Colouring edges black and white takes O(n) time.

Finally, visiting (parts of) paths
←−
Pi(ej) takes time proportional to the number

of edges coloured red which is O(n).
What remains is to show how to compute π-pointers in O(n logn) time.

We observe that πj(e, i), j = 0, . . . , je, can be computed in a total of O(logn)

time if π-pointers of all edges of
←−
Pi(e) have been computed. This follows easily

from repeated applications of the identity πj(e, i) = πj−1(πj−1(e, i), i), j > 0
(see Figure 3). Hence, by computing π-pointers in the opposite order of the
order in which edges are coloured red, we obtain all π-pointers in O(n logn)
time.

Theorem 2. Endpoints of colour intervals of a can be computed in O(k log2 n)
time assuming O(kn log n) preprocessing time. The preprocessing step is in-
dependent of a and f .

10

Proof. We start by computing the order of colour intervals of a. By Lemma 4,
this can be done in O(k log2 n) time with O(kn log n) preprocessing time. Let
π be the permutation of {1, . . . , k} such that pπ(1) ≺f

a . . . ≺f
a pπ(k).

We then compute the colour of the first point bmin and the last point bmax

of fB w.r.t. the order <f
a. This can be done in time proportional to the num-

ber k of colours since SSSP lengths for each portal have been precomputed.
If ca(bmin) = ca(bmax) then by Theorem 1, all points between bmin and

bmax have this colour. In this case, the algorithm associates this colour with
the sub-interval between the two vertices and returns (the sub-interval is not
stored explicitly, only its end vertices bmin and bmax).

Otherwise, a vertex b ∈ fB is picked, such that the number of edges in
fB before resp. after b w.r.t. the order <f

a is (approximately) the same, and
its colour ca(b) is computed. Let i be the index such that cπ(i) = ca(b). The
algorithm calls itself recursively on vertices between bmin and b with colours
cπ(1), . . . , cπ(i). And it calls itself recursively on vertices between b and bmax

with colours cπ(i), . . . , cπ(k).
The recursion stops when bmin and bmax are the endpoints of a single edge

e of fB. If ca(bmin) = ca(bmax), the algorithm associates this colour with e
and returns. Otherwise, we need the following simple observation: there is a
point p on e such that all points on bminp have colour ca(bmin) and all points
on pbmax have colour ca(bmax). Furthermore, p can be computed in O(1) time,
given these two colours. The algorithm associates the two colours with their
respective segments of e and returns.

When the algorithm terminates, each colour ci is associated with O(logn)
sub-intervals and their union defines the colour interval of a with colour ci.
Finding the colour intervals of a from these O(k log n) sub-intervals takes
O(k log n) time. What remains is to show that the algorithm above has
O(k log2 n) running time.

Let T (m, k) be a function expressing the time for the above algorithm
where m is the number of edges and k is the number of colours. If we assume
that vertices of fB are stored in an array then the point b that splits points of
fB into two equal halves can be found in O(1) time. Thus, there is a constant
c′ > 0 such that the algorithm uses at most c′k time steps excluding time
spent in recursive calls. There is also a constant c′′ such that T (m, k) ≤ c′′k
when m ≤ 2. Let c = max{c′, c′′}. Then (ignoring floors and ceilings)

T (m, k) ≤ ck + T (m/2, k1) + T (m/2, k2),

where m > 2 and k1, k2 ∈ {1, . . . , k}, k1 + k2 = k + 1. Let T̃ (m, k) be the

11

running time T (m, k) minus a value of c log n charged to each split vertex b
encountered in the current and in recursive calls. We claim that T̃ (m, k) ≤
ck log m.

The proof is by induction on m ≥ 2. When m = 2, we spend at most
c′′k ≤ ck time. Now, assume that m > 2. The induction hypothesis gives

T̃ (m, k) ≤ ck + T̃ (m/2, k1) + T̃ (m/2, k2)− c log n

≤ ck + c(k + 1) log(m/2)− c log n

= ck log m + c log m− c log n− c

< ck log m,

as requested.
It follows that T (m, k) ≤ ck log m + xc log n, where x is the total number

of split vertices. This number is proportional to the number of sub-intervals
returned by the algorithm which is O(k log m). This shows the theorem.

Note that a colour interval I need not be closed, i.e. one or both of the
endpoints need not belong to I.

We conclude this section with the following simple result which will prove
useful when we compute detours between points that may be interior points
of edges.

Lemma 5. Let p a point of edge e = (u, v) of G and let q be a point in G.
Suppose that pi is on a shortest path from u to q and that pj is on a shortest
path from v to q. Then either pi or pj is on a shortest path from p to q.

Proof. A shortest path from p to q goes through either u or v.

5 The Detour of Points in a Face

In this section, we show how to compute δG(fA, fB) in O(|f |k log2 n) expected
time.

We start by computing, for each edge e = (u, v) ∈ fA, O(k) colour
intervals of u and of v using O(k log2 n) time (with O(kn log n) preprocessing)
and take the union of the endpoints of these colour intervals. This gives O(k)
smaller sub-intervals which we associate with e. The total running time for
this over all edges is O(|f |k log2 n).

Now, let P be one of the sub-intervals associated with edge e = (u, v).
Then there are i, j ∈ {1, . . . , k} such that cu(p) = ci and cv(p) = cj for all

12

p ∈ P . Hence, for any point q ∈ P , pi is on a shortest path from u to q and
pj is on a shortest path from v to q. Lemma 5 implies that for any point
p ∈ e and any point q ∈ P , either pi or pj is on a shortest path from p to q.

We refer to P as a type 1-interval (of e) if ci 6= cj and a type 2-interval
(of e) if ci = cj .

For any edge e of fA and any type i-interval P of e, i = 1, 2, we may
assume that P is a closed interval having endpoints in vertices of fB. For
otherwise, we could compute the maximum detour between e and the first
resp. last edge e′ of P (all other edges of P have endpoints in vertices of fB).
Computing δG(e, e′) is a constant-size problem (when SSSP lengths for each
portal have been precomputed) since we know that for each point p ∈ e and
each point p′ ∈ e, there is a shortest path from p to p′ through either of two
portals pi and pj . Thus, it takes O(1) time to compute δG(e, e′) (see also [1]).
Over all e and P , this amounts to O(|f |k) time.

The value δG(fA, fB) is computed in two phases. In phase i, the maximum
detour between points in edges of fA and points in associated type i-intervals
are computed, i = 1, 2.

5.1 Phase 1

We will show that phase 1 takes O(|f |k) time when shortest path lengths
from portals and colour intervals have been computed.

The algorithm for this phase is straightforward. For each edge e of fA it
considers all edges e′ of each type 1-interval of e and computes δG(e, e′) in
constant time.

To show that phase 1 takes O(f |k|) time, we need to show that the
number of edge pairs (e, e′) is O(f |k|). To do this, we introduce a so called
dual colouring of vertices of fA for each vertex of fB. Let b be a vertex of fB.
Then vertex a ∈ fA is given dual colour cb(a), defined as the colour ca(b).

Assigning dual colours to all vertices of fA partitions this set into maximal
sub-intervals with vertices in each sub-interval having the same dual colour.
We refer to these sub-intervals as the dual colour intervals of b. These dual
colour intervals will help us bound the number of edge pairs (e, e′). First, we
need two lemmas.

Lemma 6. Let b be a vertex of fB and let a, a1, a2 be vertices of fA such that
a1 <f

b a <f
b a2, cb(a1) = cb(a2) = ci, and cb(a) = cj, i 6= j. Then for any

vertex a′ of fA, cb(a
′) 6= cj if either a′ <f

b a1 or a′ >f
b a2.

13

pi pi

pj pj

pj

pi

b

a2
a1a

b

a2
a1a

b

a2
a1a

fff

Figure 4: The situations considered in the proof of Lemma 6.

Proof. Let a′ be a vertex of fA such that either a′ <f
b a1 or a′ >f

b a2. Portal
pi is on some shortest path P1 from a1 to b. Pick P1 such that the subpath P ′

1

from a1 to pi makes sharpest possible left turns as described in the previous
section. In a similar way, we define P2 and P ′

2 for a2. Note that any path
from a to b must intersect either P ′

1 or P ′
2, see Figure 4.

Portal pj is on a shortest path P from a to b. Pick P such that the
subpath P ′ from a to pj makes sharpest possible left turns. Path P ′ cannot
cross P1 for otherwise ca(b) 6= cj , and pj /∈ P ′

1 for otherwise ca1
(b) 6= ci.

Similarly, P ′ cannot cross P2 for otherwise ca2
(b) 6= ci, and pj /∈ P ′

2 for
otherwise ca2

(b) 6= ci. Furthermore, pj cannot belong to the subpath shared
by P1 and P2 from pi to b since then ca(b) 6= cj .

It follows that any shortest path from a′ to pj crosses either P ′
1 or P ′

2.
This implies that cb(a

′) = ca′(b) 6= cj , as requested.

Lemma 7. The number of dual colour intervals of a vertex b ∈ fB is O(k).

Proof. Let N(k) be the maximum number of dual colour intervals of b when
the number of distinct colours in these intervals is exactly k. We will show
that N(k) ≤ 2k− 1. The proof is by induction on k ≥ 1. If k = 1 then there
is only one dual colour interval and we have N(k) = 1 = 2k − 1.

Now, suppose that k > 1 and that N(k′) ≤ 2k′ − 1 for all k′ less than k.
Let ci be the colour of the first dual colour interval w.r.t. the order <f

b . By
Lemma 6, there is a finite number r of dual colour intervals with colour ci

(in fact at most k). Let I1, . . . , Is be the intervals between each consecutive
pair of these dual colour intervals and let k1, . . . , ks be the number of colours
in each of them. Note that s ≥ r − 1. Also note that by the choice of ci

and by Lemma 6, two points in two different I-intervals cannot have the

14

same colour since for at least one of the two intervals, the colour of the dual
colour interval preceding and succeeding it is ci. From this and from the fact
that the I-intervals do not contain colour ci,

∑s
j=1 kj = k − 1. Applying the

induction hypothesis, this gives

N(k) ≤ r+
s

∑

j=1

N(kj) ≤ r+
s

∑

j=1

2kj−1 = r−s+2(k−1) ≤ 1+2(k−1) = 2k−1.

We are now ready to bound the running time for the phase 1 algorithm.

Theorem 3. The algorithm for phase 1 has O(|f |k) running time.

Proof. Consider an edge e = (u, v) of fA and an edge e′ = (u′, v′) of fB such
that e′ is an edge of a type 1-interval of e. Let ci = cu(u

′) = cu(v
′) and let

cj = cv(u
′) = cv(v

′). Since u′ is a vertex of fB, dual colours cu′(u) = ci and
cu′(v) = cj are well-defined and since i 6= j by assumption, these two dual
colours are distinct, implying that two dual colour intervals of b meet at e.

It follows by the above and by Lemma 7 that for each e′, the phase 1
algorithm picks O(k) edges e. Thus, the total number of edge pairs considered
by the algorithm is O(|f |k). By our earlier discussion, this suffices to show
the theorem.

5.2 Phase 2

We now consider the problem of computing the maximum detour between
points of edges of fA and points of type 2-intervals.

For any pair (e, P), where e is an edge of fA and P is a type 2-interval of
e, there is a portal pi such that for any point p ∈ e and any point q ∈ P , pi

is on a shortest path from p to q. In the following, we consider all such pairs
for a fixed pi. We will show that computing the maximum detour δi over all
these pairs can be done in O(|f | log2 |f |) expected time. From this, it will
follow that phase 2 takes O(|f |k log2 |f |) expected time.

Before showing how to compute δi, we need the idea of a canonical de-
composition of fB, defined next.

15

5.2.1 Canonical Decomposition

Define b1, . . . , bm as the interval of vertices of fB ordered according to <f
a

for some arbitrary vertex a ∈ fA. Consider splitting this interval at vertex
bj = b⌈m/2⌉ and repeat this process recursively on the two sub-intervals,
stopping when an interval containing only two vertices is reached. This gives
us O(m) = O(|f |) intervals of total size O(|f | log |f |) which we refer to as
canonical intervals. The subgraphs of fB induced by these canonical intervals
are referred to as canonical subgraphs. The set of these subgraphs, which we
denote by C, can be found in O(|f | log |f |) time.

Every sub-interval of b1, . . . , bm can be decomposed into O(log |f |) canon-
ical intervals in O(log |f |) time. This is easily seen by applying a greedy al-
gorithm that picks canonical intervals as large as possible. We refer to such
a decomposition as a canonical decomposition.

Let e be an edge of fA. By the assumption earlier that type 2-intervals
end in vertices and by Theorem 1, the union of all type 2-intervals of e of
colour ci is exactly the set of points of fB between two vertices of b1, . . . , bm.
We compute a canonical decomposition of the sub-interval between these two
vertices and add a pointer to e from each canonical subgraph corresponding
to canonical intervals in this decomposition. This is done for all e in fA.

When finished we have a total of O(|f | log |f |) pointers from canonical
subgraphs in C to edges of fA. Note that some canonical subgraphs may
contain pointers to several edges. The total time spent on constructing C
and on finding pointers is O(|f | log |f |).

Observe that δi is the maximum of δG(e, C) over all pairs consisting of an
edge e ∈ fA and a canonical subgraph C ∈ C with a pointer to e. We now
show how to compute this maximum in O(|f | log2 |f |) expected time.

5.2.2 Sweep-plane Algorithm

To efficiently compute the maximum over pairs of edges and canonical sub-
graphs, we will use the idea of lifting and lowering points followed by a
sweep-plane algorithm as described in [8]. In order to do this, we consider
the following decision problem below: given δ ∈ R, is δi ≥ δ? If we can an-
swer this quickly we can compute δi in low expected time using a randomized
algorithm by Chan [4] as described in [8].

For each canonical subgraph C ∈ C, we lift each point p ∈ C to height
dG(pi, p). And for each edge e ∈ fA, we lower each point p ∈ e to height

16

−dG(p, pi). Since we have precomputed SSSP lengths for portal pi, this
lifting/lowering can be done in O(|f | log |f |) time since the total size of all
canonical subgraphs and edges is O(|f | log |f |).

Let e be a vertex in fA and let C be a canonical subgraph with a pointer
to e. Then it is clear that the height difference between a point p ∈ e and a
point q ∈ C equals dG(p, q).

For each lifted and lowered point p, we associate a cone extending down-
wards from p and spanning an angle of α = 2 arctan(1/δ). Then as shown
in [8], δi ≥ δ if and only if a cone of a lowered point of some edge is contained
in a cone of a lifted point of some canonical subgraph with a pointer to that
edge.

Now, we sweep a plane over the cones. The sweep-plane is parallel to
the x-axis and forms an angle of (π − α)/2 with the xy-plane. During the
sweep, we maintain, for each canonical subgraph C, the intersection between
the sweep-plane and the upper envelope of lifted points of C together with
lowered points in edges that C points to. If it is detected that a cone of a
lowered point is contained in a cone of a lifted point, the algorithm reports
that δi ≥ δ and if no such event occurs, the algorithm reports that δi < δ.
This solves our decision problem.

It follows from the results of [8] that maintaining intersections between
the sweep-plane and upper envelopes takes a total of O(|f | log2 |f |) time since
the number of sweep-plane event points is O(|f | log |f |) and each event point
takes O(log |f |) time to handle. However, this is under the assumption that
no cone of a lifted point is contained in the interior of another cone of a
lifted point and that no cone of a lowered point is contained in the interior
of another cone of a lowered point (see [8] for details).

Since all lifted points belong to GB, we may satisfy this assumption for
cones of lifted points by solving our decision problem using only values δ ≥
δG(GB) (a similar trick is used in [8] for trees). For suppose that δ ≥ δG(GB)
and consider two points p and p′ belonging to the same canonical subgraph.

Let h be the height of p and let h′ be the height of p′. Assume w.l.o.g.
that h ≥ h′. Then

h− h′ = dG(p, pi)− dG(p′, pi).

We know that dG(p, p′) ≤ δG(GB)|pp′| ≤ δ|pp′|. This gives

h− h′

|pp′| =
dG(p, pi)− dG(p′, pi)

|pp′| ≤ dG(p, p′)

|pp′| ≤ δ,

17

f f

a a′

q

p

pj

pi

v

(b)(a)

Figure 5: (a): The walk of f when f is non-simple. (b): Theorem 1 holds
also when f is non-simple.

showing that the cone associated with p′ cannot belong to the interior of the
cone associated with p. A similar argument shows that with δ ≥ δG(GA),
no cone of a lowered point is contained in the interior of another cone of a
lowered point.

So by recursively computing δG(GB) and δG(GA) before computing δG(GA, GB)
it follows that the above decision problem can be solved in O(|f | log2 |f |) time
and Chan’s algorithm gives us the following result.

Theorem 4. The algorithm for phase 2 has O(|f |k log2 |f |) expected running
time.

What remains in order to compute δG(GA, GB) is to handle the case where
f is non-simple. This is the topic of the next section.

5.3 Non-simple Faces

Suppose f is non-simple. The walk of f defined in the beginning of Section 4
still applies if we inflate the edges and allowing an edge to be visited twice, see
Figure 5(a). Then running through the arguments of the preceding sections,
it can be seen that all results still hold (as an example, compare Figure 5(b)
with Figure 2).

We have now obtained the following result.

Theorem 5. δG(GA, GB) can be computed in O(n3/2 log2 n) expected time.

18

6 Dealing with Recursive Calls

In the preceding sections, we have shown how to compute δG(GA, GB) in
O(n3/2 log2 n) time. In this section, we present an algorithm that recursively
computes δG(GA) (computing δG(GB) is dealt with in a similar way) and we
will analyze its running time. From this analysis it will follow that δG can
be computed in O(n3/2 log3 n) expected time.

Let nA = |A| be the number of vertices of A. We start by applying the
separator theorem to GA which partitions A into three sets, A1, A2, and CA

such that no edge joins a vertex in A1 with a vertex in A2, neither A1 nor A2

contains more than nA/2 vertices, and CA contains no more than 2
√

2

1−
√

2/3

√
nA

vertices. Let GA1
be the subgraph of GA induced by A1 ∪CA and let GA2

be
the subgraph of GA induced by A2 ∪ CA. We have

δG(GA) = max{δG(GA1
), δG(GA2

), δG(GA1
, GA2

)}.

In the following, we will present an algorithm for computing δG(GA1
, GA2

).
From this it will easily follow how to handle subgraphs in any recursion level.

Let P be the set of portals for G and let PA = P ∪ CA. Given a vertex
a1 ∈ A1 and a vertex a2 ∈ A2, any path in G from a1 to a2 must contain at
least one vertex of PA. Thus, by defining PA as the set of portals for GA,
most of the results we presented in order to compute δG(GA, GB) now also
apply to the problem of computing δG(GA1

, GA2
). However, three problems

need to be dealt with.
The first problem is that GA may be disconnected and it causes problems

when defining cyclic orderings of faces. We deal with this as follows. Let f
be a face of G such that f∩A 6= ∅. Then as the cyclic ordering of the vertices
of f ∩ A, we use that which is induced by the cyclic ordering of vertices of
f . Essentially, this defines faces of GA where “holes” are allowed.

The second problem is that of computing SSSP distances from each portal
of PA to all vertices in GA. The running time for this should depend on
the size of GA, not the size of G. To obtain this, note that we only need to
compute SSSP distances from portals of CA since we have computed distances
from each portal in P to all vertices of G and in particular to vertices of GA.

So consider a portal pi ∈ CA. We compute SSSP distances from pi to
vertices in GA using Dijkstra’s algorithm but with a different initialization.
We are already given distances from pi to portals in P so we add these portals
to the priority queue and associate a shortest path distance from pi to each of

19

them. We also add pi to the priority queue and set the shortest distance from
pi to itself equal to zero. The rest of the algorithm runs like normal Dijkstra
on GA. This way, we find SSSP distances in G from pi to all vertices in GA

in O(nA log nA) time. Since |CA| = O(
√

nA), computing SSSP distances for

all portals of CA takes a total of O(n
3/2
A log nA) time.

The third and final problem we need to deal with is determining the
order of colour intervals of f ∩ GA2

for each vertex of f ∩ GA1
where f is

a face. Lemma 4 states that the order of colour intervals of a vertex of fA

can be computed in O(k log2 n) time with O(kn logn) time for preprocessing.
Looking at the proof of the lemma, we see that the preprocessing step only
considers portals of G, not the set of portals PA for GA. It thus needs to
be recomputed for GA. But a priori, this requires that we look at the entire
graph G since shortest paths from vertices in GA to portals in PA need not
be fully contained in GA. This will make our recursive algorithm too slow.

We modify the preprocessing step for GA as follows. We compute π-
pointers for each vertex of GA and each portal of PA as in the proof of
Lemma 4 except that when finding a path to a portal pi ∈ PA we stop if we
reach a portal of P (or as before, if we reach a red edge or pi).

This modification gives O(kAnA log nA) preprocessing time where kA =
|PA|. We now show how this preprocessing can be used to efficiently deter-
mine whether pi ≺f

a pj for two distinct portals pi, pj ∈ PA where a is a vertex
of GA1

belonging to a face f of G.
Let a′ be the successor of a in f w.r.t. <f

a. To determine whether pi ≺f
a pj ,

we apply binary searches as before in paths
←−
Pi(a

′, a) and
←−
Pj(a

′, a). If a split

is detected, or if it is detected that pi ∈
←−
Pj(a

′, a) or pj ∈
←−
Pi(a

′, a) then we
can correctly decide if pi ≺f

a pj .
The only problem that may arise is if both binary searches end in an edge

e from which there are no π-pointers and it still has not been determined
whether pi ≺f

a pj . But in this case, one of the endpoints of e must be a portal

of PA and this portal must belong to both
←−
Pi(a

′, a) and
←−
Pj(a

′, a) implying
that no colour intervals of a will get colour ci or cj. Hence, it is irrelevant
whether pi ≺f

a pj and we may simply delete the two portals in the algorithm
that sorts portals. When the sorting algorithm terminates, the order of the
remaining portals will give the order of colour intervals of a.

With the above three modifications, we get an algorithm that computes
δG(GA1

, GA2
) in O(kAnA log2 nA) expected time. We compute δG(GA1

) and
δG(GA2

) recursively where the portals for GA1
are defined as those that be-

20

long to PA ∩GA1
together with those obtained when applying the separator

theorem to GA1
(and similarly for GA2

).
More generally, consider a subgraph G′ in some node of the recursion

tree. If the size of G′ is less than some constant, a brute-force algorithm
that computes APSP-distances for vertices in G′ is applied to find δG(G′) in
constant time.

Otherwise, let Gc1 and Gc2 be the subgraphs in the two child nodes ob-
tained by applying the separator theorem to G′. Let P ′ be the set of portals
of G′. Then for i = 1, 2, the set of portals of Gci

is defined as the union of
P ′ ∩ Gci

and the set of portals obtained by applying the separator theorem
to Gci

.
Let kp denote the number of portals of G′ that are also portals of the

subgraph of G belonging to the parent node of the node containing G′, let
k′ be the number of additional portals of G′, and let n′ be the number of
vertices of G′. Then similar arguments as above show that δG(Gc1, Gc2) can
be computed in O((kp + k′)n′ log2 n′) expected time. Since k′ = O(

√
n′), this

can be rewritten as O(kpn
′ log2 n′ + n′√n′ log2 n′).

Clearly, the sum of O(n′√n′ log2 n′) over all non-leaf nodes of the re-
cursion tree is O(n3/2 log2 n). Let us bound the sum of O(kpn

′ log2 n′) over
all these nodes. Let T (n′, kp) denote the total time spent in the subtree of
the recursion tree rooted at a node containing a graph with n′ vertices and
sharing kp portals with the subgraph in the parent node. Then

T (n′, kp) ≤ T (n′/2, k1 + c
√

n′) + T (n′/2, k2 + c
√

n′) + O(kpn
′ log2 n′),

where c = 2
√

2

1−
√

2/3
and k1 + k2 ≤ kp.

It follows that the sum of all kp in the ith level of the recursion tree is

O(
∑i

j=0 2j
√

n/2j) so the total time spent in this level is

O(

i
∑

j=0

2j
√

n/2jn/2i log2 n) = O(n3/2 log2 n

i
∑

j=0

2j/2−i).

Since
∑i

j=0 2j/2−i ≤∑i
j=0 2j−i <

∑∞
j=0 2−j = 2 and since there are O(logn)

recursion levels, we have now obtained the main result of this paper.

Theorem 6. The maximum detour of a plane graph with n vertices can be
computed in O(n3/2 log3 n) expected time.

21

7 Graphs with Bounded Treewidth

We now consider the problem of computing the maximum detour of a plane
graph with bounded treewidth. The treewidth of a graph is, in a sense, a
measure of the complexity of graph. The following definition and lemma are
taken from [3].

Definition 1. A tree decomposition of a graph G = (V, E) is a pair (X, T),
where X = {Xi ⊆ V |i ∈ I} is a collection of subsets of V (called bags), and
a tree T = (I, F) with a node set I such that

1. V = ∪i∈IXi

2. For every edge (u, v) ∈ E there is some bag Xi ∈ X such that u, v ∈ Xi

3. For all u ∈ V , the nodes {i ∈ I|u ∈ Xi} form a connected subtree of T

The width of a tree decomposition ({Xi|i ∈ I}, T) is maxi∈I |Xi| − 1. The
treewidth of G is the minimum width over all tree decompositions of G.

Lemma 8. Let w ≥ 1 be a constant. Given a graph G = (V, E) with n > w+1
vertices and treewidth at most w, we can find in linear time a partition of V
into three subsets A, B, and P such that

1. no edge joins a vertex in A with a vertex in B,

2. A and B each have between n
w+1
− w and nw

w+1
vertices,

3. P contains no more than w vertices, and

4. adding edges between the vertices of P does not change the treewidth.

If we apply Lemma 8 to G instead of the separator theorem by Lipton
and Tarjan we get the subgraph GA of G induced by A∪P and the subgraph
GB of G induced by B ∪ P . Since the number of portals is at most w, we
may compute δG(GA, GB) in O(wn log2 n) = O(n log2 n) time.

To recursively compute δG(GA), we define graph G′ as the graph obtained
by removing all edges of G not belonging to GA and adding an edge between
each pair of portals of G. The cost of each such edge is set to the distance in
G between the corresponding pair of portals. Note that the number of edges
added is constant.

22

When we regard G′ as a point set, we disregard edges added between
portals. Observe that for each pair of points p and q in G′, dG′(p, q) =
dG(p, q).

Since G′ has treewidth at most w by Lemma 8, an inductive argument
shows that δG(GA) = δG′(GA) can be computed in O(n log3 n) expected
time. A similar argument shows that δG(GB) can be computed in O(n log3 n)
expected time. This shows the second result of our paper.

Theorem 7. The maximum detour of a plane graph with n vertices and
bounded treewidth can be computed in O(n log3 n) expected time.

8 Concluding Remarks

In this paper, we showed how to compute the maximum detour of a plane
graph in O(n3/2 log3 n) expected time. This is an improvement over the best
known algorithm with Θ(n2) running time. We also showed that if the graph
has bounded treewidth, its maximum detour can be computed in O(n log3 n)
expected time.

We believe that by using parametric search as described in [1], we can
obtain an algorithm computing the maximum detour of a plane graph in
O(n3/2 polylog n) worst-case time and in O(n polylog n) worst-case time when
the graph has bounded treewidth.

It would be interesting to try to beat the quadratic time bound also for
the problem of computing the stretch factor of a planar (or plane) geometric
graph. This problem appears harder since pairs of vertices achieving the
maximum detour need not be co-visible.

References

[1] P. K. Agarwal, R. Klein, C. Knauer, S. Langerman, P. Morin, M. Sharir,
and M. Soss. Computing the Detour and Spanning Ratio of Paths, Trees
and Cycles in 2D and 3D. Discrete and Computational Geometry, 39 (1):
17–37 (2008).

[2] S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. Smid. Euclidean
spanners: short, thin, and lanky. Proc. 27th ACM STOC, 1995, pp.
489–498.

23

[3] S. Caballo and C. Knauer. Algorithms for Graphs With Bounded
Treewidth Via Orthogonal Range Searching. Manuscript, Berlin, 2007.

[4] T. M. Chan. Geometric applications of a randomized optimization tech-
nique. Discrete Comput. Geom., 22(4):547–567, 1999.

[5] A. Ebbers-Baumann, R. Klein, E. Langetepe, and A. Lingas. A Fast
Algorithm for Approximating the Detour of a Polygonal Chain. Comput.
Geom. Theory Appl., 27: 123–134, 2004.

[6] D. Eppstein. Spanning trees and spanners. In J.-R. Sack and J. Urrutia,
editors, Handbook of Computational Geometry, pages 425–461, Elsevier
Science Publishers, Amsterdam, 2000.

[7] G. N. Frederickson Fast algorithms for shortest paths in planar graphs,
with applications. SIAM J. Comput., 16 (1987), pp. 1004–1022.

[8] S. Langerman, P. Morin, and M. Soss. Computing the Maximum De-
tour and Spanning Ratio of Planar Paths, Trees and Cycles. In Proc.
19th International Symposium on Theoretical Aspects of Computer Sci-
ence, volume 2285 of Lecture Notes in Computer Science, pages 250–261,
Springer-Verlag, 2002.

[9] X. Y. Li and Y. Wang. Efficient construction of low weighted bounded
degree planar spanner. Int. J. Comput. Geometry Appl. 14(1–2):69–84
(2004).

[10] R. J. Lipton and R. E. Tarjan. A Separator Theorem for Planar Graphs.
STAN-CS-77-627, October 1977.

[11] G. Narasimhan and M. Smid. Geometric Spanner Networks. Cambridge
University Press, 2007.

[12] M. Smid. Closest point problems in computational geometry. In J.-R.
Sack and J. Urrutia, editors, Handbook of Computational Geometry,
pages 877–935, Elsevier Science Publishers, Amsterdam, 2000.

24

