97 research outputs found

    Lensed galaxies in Abell 370 I. Modeling the number counts and redshift distribution of background sources

    Get PDF
    We present new observations of the cluster-lens Abell 370: a deep HST/WFPC2 F675W image and ESO 3.6m spectroscopy of faint galaxies. These observations shade new lights on the statistical properties of faint lensed galaxies. In particular, we spectroscopically confirm the multiple image nature of the B2--B3 gravitational pair (Kneib et al. 1993), and determine a redshift of z=0.806 which is in very good agreement with earlier predictions. A refined mass model of the cluster core (that includes cluster galaxy halos) is presented, based on a number of newly identified multiple images. Following Bezecourt et al. (1998a), we combine the new cluster mass model with a spectrophotometric prescription for galaxy evolution to predict the arclets number counts and redshift distribution in the HST image. In particular, the ellipticity distribution of background sources is taken into account, in order to properly estimate the statistical number and redshift distribution of arclets. We show that the redshift distribution of arclets, and particularly its high redshift tail can be used as a strong constraint to disentangle different galaxy evolution scenario. A hierarchical model which includes a number density evolution is favored by our analysis. Finally, we compute the depletion curves in the faint galaxies number counts and discuss its wavelength dependence.Comment: 10 pages, Astronomy and Astrophysics in pres

    B stars as a diagnostic of star-formation at low and high redshift

    Get PDF
    We have extended the evolutionary synthesis models by Leitherer et al. (1999b) by including a new library of B stars generated from the IUE high-dispersion spectra archive. We present the library and show how the stellar spectral properties vary according to luminosity classes and spectral types. We have generated synthetic UV spectra for prototypical young stellar populations varying the IMF and the star formation law. Clear signs of age effects are seen in all models. The contribution of B stars in the UV line spectrum is clearly detected, in particular for greater ages when O stars have evolved. With the addition of the new library we are able to investigate the fraction of stellar and interstellar contributions and the variation in the spectral shapes of intense lines. We have used our models to date the spectrum of the local super star cluster NGC1705-1. Photospheric lines of CIII1247, SiIII1417, and SV1502 were used as diagnostics to date the burst of NGC 1705-1 at 10 Myr. We have selected the star-forming galaxy 1512-cB58 as a first application of the new models to high-z galaxies. This galaxy is at z=2.723, it is gravitationally lensed, and its high signal-to-noise Keck spectrum show features typical of local starburst galaxies, such as NGC 1705-1. Models with continuous star formation were found to be more adequate for 1512-cB58 since there are spectral features typical of a composite stellar population of O and B stars. A model with Z =0.4Z_solar and an IMF with alpha=2.8 reproduces the stellar features of the 1512-cB58 spectrum.Comment: 23 pages with figures, see http://sol.stsci.edu/~demello/welcomeb.htm

    Galaxies at z=4 and the Formation of Population II

    Full text link
    We report the discovery of four high-redshift objects (3.3 < z < 4) observed behind the rich cluster CL0939+4713 (Abell 851). One object (DG 433) has a redshift of z=3.3453; the other three objects have redshifts of z\approx 4: A0 at z=3.9819, DG 353 and P1/P2 at z=3.9822. It is possible that all four objects are being lensed in some way by the cluster, DG 433 being weakly sheared, A0 being strongly sheared, and DG 353 and P1/P2 being an image pair of a common source object; detailed modelling of the cluster potential will be necessary to confirm this hypothesis. The weakness of common stellar wind features like N V and especially C IV in the spectra of these objects argues for sub-solar metallicities, at least as low as the SMC. DG 353 and DG 433, which have ground-based colors, are moderately dusty [E_{int}(B-V) < 0.15], similar to other z>3 galaxies. Star formation rates range from 2.5 (7.8) h^{-2} to 22. (78.) h^{-2} M_{\odot}/yr, for q_0=0.5 (0.05), depending on assumptions about gravitational lensing and extinction, also typical of other z>3 galaxies. These objects are tenatively identified as the low-metallicity proto-spheroid clumps that will merge to form the Population II components of today's spheroids.Comment: 16 pages, including 2 PostScript figures. Needs aaspp4.sty (included). Accepted for publication in the Astrophysical Journa

    A Multiwavelength Analysis of the Strong Lensing Cluster RCS 022434-0002.5 at z=0.778

    Full text link
    We present the results of two (101 ks total) Chandra observations of the z=0.778 optically selected lensing cluster RCS022434-0002.5, along with weak lensing and dynamical analyses of this object. An X-ray spectrum extracted within R(2500) (362 h(70)^(-1) kpc) results in an integrated cluster temperature of 5.1 (+0.9,-0.5) keV. The surface brightness profile of RCS022434-0002.5 indicates the presence of a slight excess of emission in the core. A hardness ratio image of this object reveals that this central emission is primarily produced by soft X-rays. Further investigation yields a cluster cooling time of 3.3 times 10^9 years, which is less than half of the age of the universe at this redshift given the current LCDM cosmology. A weak lensing analysis is performed using HST images, and our weak lensing mass estimate is found to be in good agreement with the X-ray determined mass of the cluster. Spectroscopic analysis reveals that RCS022434-0002.5 has a velocity dispersion of 900 +/- 180 km/s, consistent with its X-ray temperature. The core gas mass fraction of RCS022434-0002.5 is, however, found to be three times lower than expected universal values. The radial distribution of X-ray point sources within R(200) of this cluster peaks at ~0.7 R(200), possibly indicating that the cluster potential is influencing AGN activity at that radius. Correlations between X-ray and radio (VLA) point source positions are also examined.Comment: 32 pages, 9 figures. Accepted for publication in The Astrophysical Journa

    Magellan Spectroscopy of the Galaxy Cluster RX J1347.5-1145: Redshift Estimates for the Gravitationally Lensed Arcs

    Get PDF
    We present imaging and spectroscopic observations of the gravitationally lensed arcs in the field of RX J1347.5-1145, the most X-ray luminous galaxy cluster known. Based on the detection of the [OII] 3727 emission line, we confirm that the redshift of one of the arcs is z = 0.806. Its color and [OII] line strength are consistent with those of distant, actively star forming galaxies. In a second arc, we tentatively identify a pair of absorption lines superposed on a red continuum; the lines are consistent with Ca II H & K at z = 0.785. We detected a faint blue continuum in two additional arcs, but no spectral line features could be measured. We establish lower limits to their redshifts based on the absence of [OII] emission, which we argue should be present and detectable in these objects. Redshifts are also given for a number of galaxies in the field of the cluster.Comment: To appear in The Astrophysical Journal (September 2002). 6 page

    The Sextet Arcs: a Strongly Lensed Lyman Break Galaxy in the ACS Spectroscopic Galaxy Survey towards Abell 1689

    Full text link
    We present results of the HST Advanced Camera for Surveys spectroscopic ground-based redshift survey in the field of A1689. We measure 98 redshifts, increasing the number of spectroscopically confirmed objects by sixfold. We present two spectra from this catalog of the Sextet Arcs, images which arise from a strongly-lensed Lyman Break Galaxy (LBG) at a redshift of z=3.038. Gravitational lensing by the cluster magnifies its flux by a factor of ~16 and produces six separate images with a total r-band magnitude of r_625=21.7. The two spectra, each of which represents emission from different regions of the LBG, show H I and interstellar metal absorption lines at the systemic redshift. Significant variations are seen in Ly-alpha profile across a single galaxy, ranging from strong absorption to a combination of emission plus absorption. A spectrum of a third image close to the brightest arc shows Ly-alpha emission at the same redshift as the LBG, arising from either another spatially distinct region of the galaxy, or from a companion galaxy close to the LBG. Taken as a group, the Ly-alpha equivalent width in these three spectra decreases with increasing equivalent width of the strongest interstellar absorption lines. We discuss how these variations can be used to understand the physical conditions in the LBG. Intrinsically, this LBG is faint, ~0.1L*, and forming stars at a modest rate, ~4 solar masses per year. We also detect absorption line systems toward the Sextet Arcs at z=2.873 and z=2.534. The latter system is seen across two of our spectra.Comment: Accepted for publication in Ap

    Untargeted metabolomic analysis investigating links between unprocessed red meat intake and markers of inflammation.

    Get PDF
    BACKGROUND: Whether red meat consumption is associated with higher inflammation or confounded by increased adiposity remains unclear. Plasma metabolites capture the effects of diet after food is processed, digested, and absorbed, and correlate with markers of inflammation, so they can help clarify diet-health relationships. OBJECTIVE: To identify whether any metabolites associated with red meat intake are also associated with inflammation. METHODS: A cross-sectional analysis of observational data from older adults (52.84% women, mean age 63 ± 0.3 y) participating in the Multi-Ethnic Study of Atherosclerosis (MESA). Dietary intake was assessed by food-frequency questionnaire, alongside C-reactive protein (CRP), interleukin-2, interleukin-6, fibrinogen, homocysteine, and tumor necrosis factor alpha, and untargeted proton nuclear magnetic resonance (1H NMR) metabolomic features. Associations between these variables were examined using linear regression models, adjusted for demographic factors, lifestyle behaviors, and body mass index (BMI). RESULTS: In analyses that adjust for BMI, neither processed nor unprocessed forms of red meat were associated with any markers of inflammation (all P > 0.01). However, when adjusting for BMI, unprocessed red meat was inversely associated with spectral features representing the metabolite glutamine (sentinel hit: β = -0.09 ± 0.02, P = 2.0 × 10-5), an amino acid which was also inversely associated with CRP level (β = -0.11 ± 0.01, P = 3.3 × 10-10). CONCLUSIONS: Our analyses were unable to support a relationship between either processed or unprocessed red meat and inflammation, over and above any confounding by BMI. Glutamine, a plasma correlate of lower unprocessed red meat intake, was associated with lower CRP levels. The differences in diet-inflammation associations, compared with diet metabolite-inflammation associations, warrant further investigation to understand the extent that these arise from the following: 1) a reduction in measurement error with metabolite measures; 2) the extent that which factors other than unprocessed red meat intake contribute to glutamine levels; and 3) the ability of plasma metabolites to capture individual differences in how food intake is metabolized

    Finding correspondence between metabolomic features in untargeted liquid chromatography-mass spectrometry metabolomics datasets.

    Get PDF
    Integration of multiple datasets can greatly enhance bioanalytical studies, for example, by increasing power to discover and validate biomarkers. In liquid chromatography-mass spectrometry (LC-MS) metabolomics, it is especially hard to combine untargeted datasets since the majority of metabolomic features are not annotated and thus cannot be matched by chemical identity. Typically, the information available for each feature is retention time (RT), mass-to-charge ratio (m/z), and feature intensity (FI). Pairs of features from the same metabolite in separate datasets can exhibit small but significant differences, making matching very challenging. Current methods to address this issue are too simple or rely on assumptions that cannot be met in all cases. We present a method to find feature correspondence between two similar LC-MS metabolomics experiments or batches using only the features' RT, m/z, and FI. We demonstrate the method on both real and synthetic datasets, using six orthogonal validation strategies to gauge the matching quality. In our main example, 4953 features were uniquely matched, of which 585 (96.8%) of 604 manually annotated features were correct. In a second example, 2324 features could be uniquely matched, with 79 (90.8%) out of 87 annotated features correctly matched. Most of the missed annotated matches are between features that behave very differently from modeled inter-dataset shifts of RT, MZ, and FI. In a third example with simulated data with 4755 features per dataset, 99.6% of the matches were correct. Finally, the results of matching three other dataset pairs using our method are compared with a published alternative method, metabCombiner, showing the advantages of our approach. The method can be applied using M2S (Match 2 Sets), a free, open-source MATLAB toolbox, available at https://github.com/rjdossan/M2S
    • …
    corecore