111 research outputs found
Quantized charge transport through a static quantum dot using a surface acoustic wave
We present a detailed study of the surface acoustic wave mediated quantized
transport of electrons through a split gate device containing an impurity
potential defined quantum dot within the split gate channel. A new regime of
quantized transport is observed at low RF powers where the surface acoustic
wave amplitude is comparable to the quantum dot charging energy. In this regime
resonant transport through the single-electron dot state occurs which we
interpret as turnstile-like operation in which the traveling wave amplitude
modulates the entrance and exit barriers of the quantum dot in a cyclic fashion
at GHz frequencies. For high RF powers, where the amplitude of the surface
acoustic wave is much larger than the quantum dot energies, the quantized
acoustoelectric current transport shows behavior consistent with previously
reported results. However, in this regime, the number of quantized current
plateaus observed and the plateau widths are determined by the properties of
the quantum dot, demonstrating that the microscopic detail of the potential
landscape in the split gate channel has a profound influence on the quantized
acoustoelectric current transport.Comment: 9 page
Single-electron transport driven by surface acoustic waves: moving quantum dots versus short barriers
We have investigated the response of the acoustoelectric current driven by a
surface-acoustic wave through a quantum point contact in the closed-channel
regime. Under proper conditions, the current develops plateaus at integer
multiples of ef when the frequency f of the surface-acoustic wave or the gate
voltage Vg of the point contact is varied. A pronounced 1.1 MHz beat period of
the current indicates that the interference of the surface-acoustic wave with
reflected waves matters. This is supported by the results obtained after a
second independent beam of surface-acoustic wave was added, traveling in
opposite direction. We have found that two sub-intervals can be distinguished
within the 1.1 MHz modulation period, where two different sets of plateaus
dominate the acoustoelectric-current versus gate-voltage characteristics. In
some cases, both types of quantized steps appeared simultaneously, though at
different current values, as if they were superposed on each other. Their
presence could result from two independent quantization mechanisms for the
acoustoelectric current. We point out that short potential barriers determining
the properties of our nominally long constrictions could lead to an additional
quantization mechanism, independent from those described in the standard model
of 'moving quantum dots'.Comment: 25 pages, 12 figures, to be published in a special issue of J. Low
Temp. Phys. in honour of Prof. F. Pobel
A numerical investigation of a piezoelectric surface acoustic wave interaction with a one-dimensional channel
We investigate the propagation of a piezoelectric surface acoustic wave (SAW)
across a GaAs/AlGaAs heterostructure surface, on which there is
fixed a metallic split-gate. Our method is based on a finite element
formulation of the underlying equations of motion, and is performed in
three-dimensions fully incorporating the geometry and material composition of
the substrate and gates. We demonstrate attenuation of the SAW amplitude as a
result of the presence of both mechanical and electrical gates on the surface.
We show that the incorporation of a simple model for the screening by the
two-dimensional electron gas (2DEG), results in a total electric potential
modulation that suggests a mechanism for the capture and release of electrons
by the SAW. Our simulations suggest the absence of any significant turbulence
in the SAW motion which could hamper the operation of SAW based quantum devices
of a more complex geometry.Comment: 8 pages, 8 figure
Charge transport through single molecules, quantum dots, and quantum wires
We review recent progresses in the theoretical description of correlation and
quantum fluctuation phenomena in charge transport through single molecules,
quantum dots, and quantum wires. A variety of physical phenomena is addressed,
relating to co-tunneling, pair-tunneling, adiabatic quantum pumping, charge and
spin fluctuations, and inhomogeneous Luttinger liquids. We review theoretical
many-body methods to treat correlation effects, quantum fluctuations,
nonequilibrium physics, and the time evolution into the stationary state of
complex nanoelectronic systems.Comment: 48 pages, 14 figures, Topical Review for Nanotechnolog
A Josephson Quantum Electron Pump
A macroscopic fluid pump works according to the law of Newtonian mechanics
and transfers a large number of molecules per cycle (of the order of 10^23). By
contrast, a nano-scale charge pump can be thought as the ultimate
miniaturization of a pump, with its operation being subject to quantum
mechanics and with only few electrons or even fractions of electrons transfered
per cycle. It generates a direct current in the absence of an applied voltage
exploiting the time-dependence of some properties of a nano-scale conductor.
The idea of pumping in nanostructures was discussed theoretically a few decades
ago [1-4]. So far, nano-scale pumps have been realised only in system
exhibiting strong Coulombic effects [5-12], whereas evidence for pumping in the
absence of Coulomb-blockade has been elusive. A pioneering experiment by
Switkes et al. [13] evidenced the difficulty of modulating in time the
properties of an open mesoscopic conductor at cryogenic temperatures without
generating undesired bias voltages due to stray capacitances [14,15]. One
possible solution to this problem is to use the ac Josephson effect to induce
periodically time-dependent Andreev-reflection amplitudes in a hybrid
normal-superconducting system [16]. Here we report the experimental detection
of charge flow in an unbiased InAs nanowire (NW) embedded in a superconducting
quantum interference device (SQUID). In this system, pumping may occur via the
cyclic modulation of the phase of the order parameter of different
superconducting electrodes. The symmetry of the current with respect to the
enclosed magnetic flux [17,18] and bias SQUID current is a discriminating
signature of pumping. Currents exceeding 20 pA are measured at 250 mK, and
exhibit symmetries compatible with a pumping mechanism in this setup which
realizes a Josephson quantum electron pump (JQEP).Comment: 7+ pages, 6 color figure
Acoustic charge transport in GaN nanowires
We present acoustic charge transport in GaN nanowires (GaN NWs). The GaN NWs were grown by molecular beam epitaxy (MBE) on silicon(111) substrates. The nanowires were removed from the silicon substrate, aligned using surface acoustic waves (SAWs) on the piezoelectric substrate LiNbO3 and finally contacted by electron beam lithography. Then, a SAW was used to create an acoustoelectric current in the GaN NWs which was detected as a function of radio-frequency (RF) wave frequency and its power. The presented method and our experimental findings open up a route towards new acoustic charge transport nanostructuredevices in a wide bandgap material such as GaN
- …