2 research outputs found
Two hundred years after a commercial marine turtle fishery: the current status of marine turtles nesting in the Cayman Islands
Large populations of marine turtles breeding in the Cayman Islands were drastically reduced in the early 1800s. However, marine turtle nesting still occurs in the islands. The present-day status of this nesting population provides insight into the conservation of marine turtles, a long-lived species. In 1998 and 1999, the first systematic survey of marine turtle nesting in the Cayman Islands found 38 nests on 22 beaches scattered through the three islands. Three species were found: the green Chelonia mydas, hawksbill Eretmochelys imbricata and loggerhead Caretta caretta turtles. Comparison with other rookeries suggests that the small number of sexually mature adults surviving Cayman’s huge perturbations may be impeding population recovery. This shows the need to implement conservation measures prior to massive reductions in population size
How many came home? Evaluating ex‐situ conservation of green turtles in the Cayman Islands
Ex-situ management is an important conservation tool that allows the preservation of biological diversity outside natural habitats while supporting survival in the wild. Captive breeding followed by reintroduction is a possible approach for endangered species conservation and preservation of genetic variability. The Cayman Turtle Centre Ltd was established in 1968 to market green turtle (Chelonia mydas) meat and other products and replenish wild populations, thought to be locally extirpated, through captive breeding. We evaluated the effects of this reintroduction program using molecular markers (13 microsatellites, 800bp D-loop and STR mtDNA sequences) from captive breeders (N=257) and wild nesting females (N=57) (sampling period: 2013-2015). We divided the captive breeders into three groups: founders (from the original stock), and then two subdivisions of F1 individuals corresponding to two different management strategies, cohort 1995 ("C1995)" and multicohort F1 ("MCF1"). Loss of genetic variability and increased relatedness was observed in the captive stock over time. We found no significant differences in diversity among captive and wild groups, and similar or higher levels of haplotype variability when compared to other natural populations. Using parentage and sibship assignment, we determined that 90% of the wild individuals were related to the captive stock. Our results suggest a strong impact of the reintroduction program on the present recovery of the wild green turtle population nesting in the Cayman Islands. Moreover, genetic relatedness analyses of captive populations are necessary to improve future management actions to maintain genetic diversity in the long term and avoid inbreeding depression