35 research outputs found

    Phase II study of TP300 in patients with advanced gastric or gastro-oesophageal junction adenocarcinoma

    Get PDF
    Background: TP300, a recently developed synthetic camptothecin analogue, is a highly selective topoisomerase I inhibitor. A phase I study showed good safety and tolerability. As camptothecins have proven active in oesophago-gastric adenocarcinomas, in this phase II study we assessed the efficacy and safety of TP300 in patients with gastric or gastro-oesophageal junction (GOJ) adenocarcinomas. Methods: Eligible patients had metastatic or locally advanced gastric or Siewert Types II or III GOJ inoperable adenocarcinoma. Patients were chemotherapy naïve unless this had been administered in the perioperative setting. TP300 was administered as a 1-h intravenous infusion every 3 weeks (a cycle) for up to 6 cycles at a starting dose of 8 mg/m2 with intra-patient escalation to 10 mg/m2 from cycle 2 in the absence of dose-limiting toxicity. Tumour responses (RECIST 1.1) were assessed every 6 weeks. Toxicity was recorded by NCI-CTCAE version 3.0. Using a modified two-stage Simon design (Stage I and II), a total of 43 patients were to be included providing there were 3 of 18 patients with objective response in Stage I of the study. Results: In Stage I of the study 20 patients (14 males, 6 females), median age 67 years (range 40 − 82), performance status ECOG 0/1, with GC [14] or GOJ carcinoma [6] were enrolled. Of the 16 evaluable patients, 11 received the planned dose increase to 10 mg/m2 at cycle 2, 2 decreased to 6 mg/m2, and 3 continued on 8 mg/m2. There were no objective responses after 2 cycles of treatment. Twelve patients had stable disease for 1 − 5 months and 4 had progressive disease. Median progression free survival (PFS) was 4.1 months (CI [1.6 − 4.9]), median time to progression (TTP) was 2.9 months (CI [1.4 − 4.2]). Grade 3/4 toxicities (worst grade all cycles) included 7 patients (35 %) with neutropenia, 4 patients (20 %) with anaemia, 2 patients (10 %) with thrombocytopenia, and 3 patients (15 %) with fatigue. This study was terminated at the end of Stage I due to a lack of the required (3/18) responders. Conclusions: This study of TP300 showed good drug tolerability but it failed to demonstrate sufficient efficacy as measured by radiological response

    Phase II study of TP300 in patients with advanced gastric or gastro-oesophageal junction adenocarcinoma

    Get PDF
    Background: TP300, a recently developed synthetic camptothecin analogue, is a highly selective topoisomerase I inhibitor. A phase I study showed good safety and tolerability. As camptothecins have proven active in oesophago-gastric adenocarcinomas, in this phase II study we assessed the efficacy and safety of TP300 in patients with gastric or gastro-oesophageal junction (GOJ) adenocarcinomas. Methods: Eligible patients had metastatic or locally advanced gastric or Siewert Types II or III GOJ inoperable adenocarcinoma. Patients were chemotherapy naïve unless this had been administered in the perioperative setting. TP300 was administered as a 1-h intravenous infusion every 3 weeks (a cycle) for up to 6 cycles at a starting dose of 8 mg/m2 with intra-patient escalation to 10 mg/m2 from cycle 2 in the absence of dose-limiting toxicity. Tumour responses (RECIST 1.1) were assessed every 6 weeks. Toxicity was recorded by NCI-CTCAE version 3.0. Using a modified two-stage Simon design (Stage I and II), a total of 43 patients were to be included providing there were 3 of 18 patients with objective response in Stage I of the study. Results: In Stage I of the study 20 patients (14 males, 6 females), median age 67 years (range 40 − 82), performance status ECOG 0/1, with GC [14] or GOJ carcinoma [6] were enrolled. Of the 16 evaluable patients, 11 received the planned dose increase to 10 mg/m2 at cycle 2, 2 decreased to 6 mg/m2, and 3 continued on 8 mg/m2. There were no objective responses after 2 cycles of treatment. Twelve patients had stable disease for 1 − 5 months and 4 had progressive disease. Median progression free survival (PFS) was 4.1 months (CI [1.6 − 4.9]), median time to progression (TTP) was 2.9 months (CI [1.4 − 4.2]). Grade 3/4 toxicities (worst grade all cycles) included 7 patients (35 %) with neutropenia, 4 patients (20 %) with anaemia, 2 patients (10 %) with thrombocytopenia, and 3 patients (15 %) with fatigue. This study was terminated at the end of Stage I due to a lack of the required (3/18) responders. Conclusions: This study of TP300 showed good drug tolerability but it failed to demonstrate sufficient efficacy as measured by radiological response

    Manual / Issue 11 / Repair

    Get PDF
    Manual, a journal about art and its making. Repair. Can we find in the detail, in the stitch and the weave, an ecology of care, a model for activating new forms of life, ones that might reject or reimagine an economic and cultural order based on novelty, disposability, and the monadic self? Can they help us learn to live together in a broken world? —Brian Goldberg and Kate Irvin, from the preface to Issue 11 This volume complemented the exhibition Repair and Design Futures, on view at the RISD Museum October 5, 2018 through June 30, 2019. Softcover, 96 pages. Published 2018 by the RISD Museum. Manual 11 (Repair) contributors include Markus Berger, Gina Borromeo, Linda Catano, Thomas Denenberg, Daniel Eatock, Brian Goldberg, Ramiro Gomez, Kate Irvin, Anna Rose Keefe, Olivia Laing, Steven Lubar, Roberto Lugo, Lisa Z. Morgan, Maureen C. O’Brien, Barry Schwabsky, Sharma Shields, Jessica Urick, and Liliane Wong.https://digitalcommons.risd.edu/risdmuseum_journals/1037/thumbnail.jp

    Clioquinol and pyrrolidine dithiocarbamate complex with copper to form proteasome inhibitors and apoptosis inducers in human breast cancer cells

    Get PDF
    INTRODUCTION: A physiological feature of many tumor tissues and cells is the tendency to accumulate high concentrations of copper. While the precise role of copper in tumors is cryptic, copper, but not other trace metals, is required for angiogenesis. We have recently reported that organic copper-containing compounds, including 8-hydroxyquinoline-copper(II) and 5,7-dichloro-8-hydroxyquinoline-copper(II), comprise a novel class of proteasome inhibitors and tumor cell apoptosis inducers. In the current study, we investigate whether clioquinol (CQ), an analog of 8-hydroxyquinoline and an Alzheimer's disease drug, and pyrrolidine dithiocarbamate (PDTC), a known copper-binding compound and antioxidant, can interact with copper to form cancer-specific proteasome inhibitors and apoptosis inducers in human breast cancer cells. Tetrathiomolybdate (TM), a strong copper chelator currently being tested in clinical trials, is used as a comparison. METHODS: Breast cell lines, normal, immortalized MCF-10A, premalignant MCF10AT1K.cl2, and malignant MCF10DCIS.com and MDA-MB-231, were treated with CQ or PDTC with or without prior interaction with copper, followed by measurement of proteasome inhibition and cell death. Inhibition of the proteasome was determined by levels of the proteasomal chymotrypsin-like activity and ubiquitinated proteins in protein extracts of the treated cells. Apoptotic cell death was measured by morphological changes, Hoechst staining, and poly(ADP-ribose) polymerase cleavage. RESULTS: When in complex with copper, both CQ and PDTC, but not TM, can inhibit the proteasome chymotrypsin-like activity, block proliferation, and induce apoptotic cell death preferentially in breast cancer cells, less in premalignant breast cells, but are non-toxic to normal/non-transformed breast cells at the concentrations tested. In contrast, CQ, PDTC, TM or copper alone had no effects on any of the cells. Breast premalignant or cancer cells that contain copper at concentrations similar to those found in patients, when treated with just CQ or PDTC alone, but not TM, undergo proteasome inhibition and apoptosis. CONCLUSION: The feature of breast cancer cells and tissues to accumulate copper can be used as a targeting method for anticancer therapy through treatment with novel compounds such as CQ and PDTC that become active proteasome inhibitors and breast cancer cell killers in the presence of copper

    Communications Biophysics

    Get PDF
    Contains reports on seven research projects split into three sections, with research objective for the final section.National Institutes of Health (Grant 2 PO1 NS 13126)National Institutes of Health (Grant 5 RO1 NS 18682)National Institutes of Health (Grant 1 RO1 NS 20322)National Institutes of Health (Grant 1 RO1 NS 20269)National Institutes of Health (Grant 5 T32 NS 07047)Symbion, Inc.National Institutes of Health (Grant 5 RO1 NS10916)National Institutes of Health (Grant 1 RO1 NS16917)National Science Foundation (Grant BNS83-19874)National Science Foundation (Grant BNS83-19887)National Institutes of Health (Grant 5 RO1 NS12846)National Institutes of Health (Grant 5 RO1 NS21322)National Institutes of Health (Grant 5 RO1 NS 11080

    Communications Biophysics

    Get PDF
    Contains research objectives and reports on eight research projects split into three sections.National Institutes of Health (Grant 2 PO1 NS13126)National Institutes of Health (Grant 5 RO1 NS18682)National Institutes of Health (Grant 5 RO1 NS20322)National Institutes of Health (Grant 1 RO1 NS 20269)National Institutes of Health (Grant 5 T32 NS 07047)Symbion, Inc.National Institutes of Health (Grant 5 R01 NS10916)National Institutes of Health (Grant 1 RO NS 16917)National Science Foundation (Grant BNS83-19874)National Science Foundation (Grant BNS83-19887)National Institutes of Health (Grant 5 RO1 NS12846)National Institutes of Health (Grant 1 RO1 NS21322-01)National Institutes of Health (Grant 5 T32-NS07099-07)National Institutes of Health (Grant 1 RO1 NS14092-06)National Science Foundation (Grant BNS77-21751)National Institutes of Health (Grant 5 RO1 NS11080

    Communication Biophysics

    Get PDF
    Contains reports on six research projects.National Institutes of Health (Grant 5 PO1 NS13126)National Institutes of Health (Grant 5 RO1 NS18682)National Institutes of Health (Grant 5 RO1 NS20322)National Institutes of Health (Grant 5 R01 NS20269)National Institutes of Health (Grant 5 T32NS 07047)Symbion, Inc.National Science Foundation (Grant BNS 83-19874)National Science Foundation (Grant BNS 83-19887)National Institutes of Health (Grant 6 RO1 NS 12846)National Institutes of Health (Grant 1 RO1 NS 21322

    Electrophysiological measurements of peripheral vestibular function—A review of electrovestibulography

    Get PDF
    Electrocochleography (EcochG), incorporating the Cochlear Microphonic (CM), the Summating Potential (SP), and the cochlear Compound Action Potential (CAP), has been used to study cochlear function in humans and experimental animals since the 1930s, providing a simple objective tool to assess both hair cell (HC) and nerve sensitivity. The vestibular equivalent of ECochG, termed here Electrovestibulography (EVestG), incorporates responses of the vestibular HCs and nerve. Few research groups have utilized EVestG to study vestibular function. Arguably, this is because stimulating the cochlea in isolation with sound is a trivial matter, whereas stimulating the vestibular system in isolation requires significantly more technical effort. That is, the vestibular system is sensitive to both high-level sound and bone-conducted vibrations, but so is the cochlea, and gross electrical responses of the inner ear to such stimuli can be difficult to interpret. Fortunately, several simple techniques can be employed to isolate vestibular electrical responses. Here, we review the literature underpinning gross vestibular nerve and HC responses, and we discuss the nomenclature used in this field. We also discuss techniques for recording EVestG in experimental animals and humans and highlight how EVestG is furthering our understanding of the vestibular system
    corecore