70 research outputs found

    Coexpression of EphB4 and ephrinB2 in tumour advancement of ovarian cancers

    Get PDF
    EphB4 and ephrinB2 expressions in ovarian cancers were studied to analyse EphB4/ephrinB2 functions against clinical backgrounds. EphB4 and ephrinB2 were dominantly localised in ovarian cancer cells of all cases studied. Both the histoscores and mRNA levels of EphB4 and ephrinB2 significantly increased with clinical stages (I<II<III<IV, P<0.001) in ovarian cancers, although there was no significant difference in EphB4 and ephrinB2 histoscores or in mRNA levels according to histopathological types. EphB4 as well as ephrinB2 histoscores in cancer cells correlated with the corresponding mRNA levels in each case (EphB4, P<0.001; ephrinB2, P<0.001). The 24-month survival rates of the 36 patients with high EphB4 and ephrinB2 expression were poor (25 and 27%, respectively), while for the other 36 patients with low EphB4 and ephrinB2 expression, they were significantly higher (68 and 64%, respectively). Therefore, EphB4/ephrinB2 may function in tumour advancement and coexpression of the Eph/ephrin system may potentiate tumour progression leading to poor survival. Thus, EphB4/ephrinB2 can be recognised as a novel prognostic indicator in the primary tumours of ovarian cancers

    Over-expression of Eph and ephrin genes in advanced ovarian cancer: ephrin gene expression correlates with shortened survival

    Get PDF
    BACKGROUND: Increased expression of Eph receptor tyrosine kinases and their ephrin ligands has been implicated in tumor progression in a number of malignancies. This report describes aberrant expression of these genes in ovarian cancer, the commonest cause of death amongst gynaecological malignancies. METHODS: Eph and ephrin expression was determined using quantitative real time RT-PCR. Correlation of gene expression was measured using Spearman's rho statistic. Survival was analysed using log-rank analysis and (was visualised by) Kaplan-Meier survival curves. RESULTS: Greater than 10 fold over-expression of EphA1 and a more modest over-expression of EphA2 were observed in partially overlapping subsets of tumors. Over-expression of EphA1 strongly correlated (r = 0.801; p < 0.01) with the high affinity ligand ephrin A1. A similar trend was observed between EphA2 and ephrin A1 (r = 0.387; p = 0.06). A striking correlation of both ephrin A1 and ephrin A5 expression with poor survival (r = -0.470; p = 0.02 and r = -0.562; p < 0.01) was observed. Intriguingly, there was no correlation between survival and other clinical parameters or Eph expression. CONCLUSION: These data imply that increased levels of ephrins A1 and A5 in the presence of high expression of Ephs A1 and A2 lead to a more aggressive tumor phenotype. The known functions of Eph/ephrin signalling in cell de-adhesion and movement may explain the observed correlation of ephrin expression with poor prognosis

    Increased expression of EphA7 correlates with adverse outcome in primary and recurrent glioblastoma multiforme patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malignant gliomas are lethal cancers, highly dependent on angiogenesis and treatment options and prognosis still remain poor for patients with recurrent glioblastoma multiforme (GBM). Ephs and ephrins have many well-defined functions during embryonic development of central nervous system such as axon mapping, neural crest cell migration, hindbrain segmentation and synapse formation as well as physiological and abnormal angiogenesis. Accumulating evidence indicates that Eph and ephrins are frequently overexpressed in different tumor types including GBM. However, their role in tumorigenesis remains controversial, as both tumor growth promoter and suppressor potential have been ascribed to Eph and ephrins while the function of EphA7 in GBM pathogenesis remains largely unknown.</p> <p>Methods</p> <p>In this study, we investigated the immunohistochemical expression of EphA7 in a series of 32 primary and recurrent GBM and correlated it with clinical pathological parameters and patient outcome. In addition, intratumor microvascular density (MVD) was quantified by immunostaining for endothelial cell marker von Willebrand factor (vWF).</p> <p>Results</p> <p>Overexpression of EphA7 protein was predictive of the adverse outcome in GBM patients, independent of MVD expression (p = 0.02). Moreover, high density of MVD as well as higher EphA7 expression predicted the disease outcome more accurately than EphA7 variable alone (p = 0.01). There was no correlation between MVD and overall survival or recurrence-free survival (p > 0.05). However, a statistically significant correlation between lower MVD and tumor recurrence was observed (p = 0.003).</p> <p>Conclusion</p> <p>The immunohistochemical assessment of tissue EphA7 provides important prognostic information in GBM and would justify its use as surrogate marker to screen patients for tyrosine kinase inhibitor therapy.</p

    Mammary epithelial cell transformation: insights from cell culture and mouse models

    Get PDF
    Normal human mammary epithelial cells (HMECs) have a finite life span and do not undergo spontaneous immortalization in culture. Critical to oncogenic transformation is the ability of cells to overcome the senescence checkpoints that define their replicative life span and to multiply indefinitely – a phenomenon referred to as immortalization. HMECs can be immortalized by exposing them to chemicals or radiation, or by causing them to overexpress certain cellular genes or viral oncogenes. However, the most efficient and reproducible model of HMEC immortalization remains expression of high-risk human papillomavirus (HPV) oncogenes E6 and E7. Cell culture models have defined the role of tumor suppressor proteins (pRb and p53), inhibitors of cyclin-dependent kinases (p16(INK4a), p21, p27 and p57), p14(ARF), telomerase, and small G proteins Rap, Rho and Ras in immortalization and transformation of HMECs. These cell culture models have also provided evidence that multiple epithelial cell subtypes with distinct patterns of susceptibility to oncogenesis exist in the normal mammary tissue. Coupled with information from distinct molecular portraits of primary breast cancers, these findings suggest that various subtypes of mammary cells may be precursors of different subtypes of breast cancers. Full oncogenic transformation of HMECs in culture requires the expression of multiple gene products, such as SV40 large T and small t, hTERT (catalytic subunit of human telomerase), Raf, phosphatidylinositol 3-kinase, and Ral-GEFs (Ral guanine nucleotide exchange factors). However, when implanted into nude mice these transformed cells typically produce poorly differentiated carcinomas and not adenocarcinomas. On the other hand, transgenic mouse models using ErbB2/neu, Ras, Myc, SV40 T or polyomavirus T develop adenocarcinomas, raising the possibility that the parental normal cell subtype may determine the pathological type of breast tumors. Availability of three-dimensional and mammosphere models has led to the identification of putative stem cells, but more studies are needed to define their biologic role and potential as precursor cells for distinct breast cancers. The combined use of transformation strategies in cell culture and mouse models together with molecular definition of human breast cancer subtypes should help to elucidate the nature of breast cancer diversity and to develop individualized therapies

    Narrowing the knowledge gaps for melanoma

    Get PDF
    Cutaneous melanoma originates from pigment producing melanocytes or their precursors and is considered the deadliest form of skin cancer. For the last 40 years, few treatment options were available for patients with late-stage melanoma. However, remarkable advances in the therapy field were made recently, leading to the approval of two new drugs, the mutant BRAF inhibitor vemurafenib and the immunostimulant ipilimumab. Although these drugs prolong patients' lives, neither drug cures the disease completely, emphasizing the need for improvements of current therapies. Our knowledge about the complex genetic and biological mechanisms leading to melanoma development has increased, but there are still gaps in our understanding of the early events of melanocyte transformation and disease progression. In this review, we present a summary of the main contributing factors leading to melanocyte transformation and discuss recent novel findings and technologies that will help answer some of the key biological melanoma questions and lay the groundwork for novel therapies

    The POU domain transcription factor Brn-2: elevated expression in malignant melanoma and regulation of melanocyte-specific gene expression.

    No full text
    Previous work has shown that melanoma cell lines express a distinct octamer binding protein. Given the role of octamer-binding proteins in cell differentiation and development, the role this factor is a key issue in understanding melanocyte differentiation and transformation. Using a proteolytic clipping assay, we show that the melanoma-specific octamer factor is Brn-2/N-Oct3, a POU domain protein previously known to be expressed in adult brain and in the developing nervous system. N-Oct3 mRNA was detected in a range of human melanoma cell lines and was around 10-fold elevated compared to normal human melanocytes while mRNA for Brn-2 was also detected in a mouse melanoblast cell line. Expression of Brn-2/N-Oct3, in melanoma cells in cotransfection assays activated the expression of the MHC class II DR alpha promoter but repressed the activity of the melanocyte-specific tyrosinase promoter. Repression correlated with Brn-2/N-Oct3 binding in a mutually exclusive fashion with basic-helix-loop-helix-leucine-zipper (bHLH-LZ) transcription factor USF in vitro and with Brn-2 expression preventing activation of the tyrosinase promoter by the bHLH-LZ factor Microphthalmia in vivo. The potential role of Brn-2/N-Oct3 in melanocyte differentiation and gene expression is discussed

    Brachyury-related transcription factor Tbx2 and repression of the melanocyte-specific TRP-1 promoter.

    Get PDF
    Previous work has demonstrated that two key melanocyte-specific elements termed the MSEu and MSEi play critical roles in the expression of the melanocyte-specific tyrosinase-related protein 1 (TRP-1) promoter. Both the MSEu and MSEi, located at position -237 and at the initiator, respectively, bind a melanocyte-specific factor termed MSF but are also recognized by a previously uncharacterized repressor, since mutations affecting either of these elements result in strong up-regulation of TRP-1 promoter activity in melanoma cells. Here we demonstrate that repression mediated by the MSEu and MSEi also operates in melanocytes. We also report that both the MSEu and MSEi are recognized by the brachyury-related transcription factor Tbx2, a member of the recently described T-box family, and that Tbx2 is expressed in melanocyte and melanoblast cell lines but not in melanoblast precursor cells. Although Tbx2 and MSF each recognize the TRP-1 MSEu and MSEi motifs, it is binding by Tbx-2, not binding by MSF, that correlates with repression. Several lines of evidence tend to point to the brachyury-related transcription factor Tbx2 as being the repressor of TRP-1 expression: both the MSEu and MSEi bind Tbx2, and mutations in either element that result in derepression of the TRP-1 promoter diminish binding by Tbx2; the TRP-1 promoter, but not the tyrosinase, microphthalmia, or glyceraldehyde-3-phosphate dehydrogenase (G3PDH) promoter, is repressed by Tbx2 in cotransfection assays; a high-affinity consensus brachyury/Tbx2-binding site is able to constitutively repress expression of the heterologous IE110 promoter; and a low-affinity brachyury/Tbx2 binding site is able to mediate Tbx2-dependent repression of the G3PDH promoter. Although we cannot rule out the presence of an additional, as yet unidentified factor playing a role in the negative regulation of TRP-1 in vivo, the evidence presented here suggests that Tbx2 most likely is the previously unidentified repressor of TRP-1 expression and as such is likely to represent the first example of transcriptional repression by a T-box family member
    corecore