164 research outputs found
Zoneamento agroecológico para a região de Ribeirão Preto utilizando um sistema de informações geográficas.
Objetivando contribuir com a metodologia de identificação de potencialidades de uso das terras, este trabalho apresenta uma proposta de zoneamento agroecológico da quadrícula de Ribeirão Preto, SP, localizada entre as coordenadas de 21o00'S a 21o30'S e 47o30'W a 48o00'W, com base em características de solo, relevo e clima, utilizando-se de um Sistema de Informações Geográficas. Para caracterizar o regime térmico-hídrico da área utilizou-se os dados de temperatura do ar e de chuva, de 22 localidades, referentes ao período de 1967 a 1996. De acordo com os critérios adotados, quanto a capacidade de uso das terras, o zoneamento identificou seis unidades de utilização da área: agricultura (I); agricultura (II); agricultura (III); pecuária; agrossilvicultura e preservação. As principais conclusões referentes à área de estudo foram: o regime térmico-hídrico é praticamente homogêneo, a vocação dominante é para agricultura (I) representando aproximadamente 191.118 hectares, correspondentes a 66,3% da área e cerca de 82,5% das terras possuem vocação para agropecuária e 10,4% devem ser preservadas ou utilizadas seguindo técnicas conservacionistas
Map-based multicriteria analysis to support interactive land use allocation
This article focuses on the use of map-based multicriteria analysis to develop a negotiation support tool for land use allocation. Spatial multicriteria analysis is used to make explicit trade-offs between objectives and to provide guidance and feedback on the land use changes negotiated by the participants. Digital maps are the means of communication among workshop participants, and an interactive mapping device (the 'Touch table') is used as the interface. Participants are informed about the relevant trade-offs on the map and use this information to change the land use maps. The approach is tested during a negotiation session as part of the land use planning process of the Bodegraven polder, a peat meadow area in the Netherlands. © 2011 Copyright Taylor and Francis Group, LLC
Dynamical mean-field approach to materials with strong electronic correlations
We review recent results on the properties of materials with correlated
electrons obtained within the LDA+DMFT approach, a combination of a
conventional band structure approach based on the local density approximation
(LDA) and the dynamical mean-field theory (DMFT). The application to four
outstanding problems in this field is discussed: (i) we compute the full
valence band structure of the charge-transfer insulator NiO by explicitly
including the p-d hybridization, (ii) we explain the origin for the
simultaneously occuring metal-insulator transition and collapse of the magnetic
moment in MnO and Fe2O3, (iii) we describe a novel GGA+DMFT scheme in terms of
plane-wave pseudopotentials which allows us to compute the orbital order and
cooperative Jahn-Teller distortion in KCuF3 and LaMnO3, and (iv) we provide a
general explanation for the appearance of kinks in the effective dispersion of
correlated electrons in systems with a pronounced three-peak spectral function
without having to resort to the coupling of electrons to bosonic excitations.
These results provide a considerable progress in the fully microscopic
investigations of correlated electron materials.Comment: 24 pages, 14 figures, final version, submitted to Eur. Phys. J. for
publication in the Special Topics volume "Cooperative Phenomena in Solids:
Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom
Optical Light Curves of Supernovae
Photometry is the most easily acquired information about supernovae. The
light curves constructed from regular imaging provide signatures not only for
the energy input, the radiation escape, the local environment and the
progenitor stars, but also for the intervening dust. They are the main tool for
the use of supernovae as distance indicators through the determination of the
luminosity. The light curve of SN 1987A still is the richest and longest
observed example for a core-collapse supernova. Despite the peculiar nature of
this object, as explosion of a blue supergiant, it displayed all the
characteristics of Type II supernovae. The light curves of Type Ib/c supernovae
are more homogeneous, but still display the signatures of explosions in massive
stars, among them early interaction with their circumstellar material. Wrinkles
in the near-uniform appearance of thermonuclear (Type Ia) supernovae have
emerged during the past decade. Subtle differences have been observed
especially at near-infrared wavelengths. Interestingly, the light curve shapes
appear to correlate with a variety of other characteristics of these
supernovae. The construction of bolometric light curves provides the most
direct link to theoretical predictions and can yield sorely needed constraints
for the models. First steps in this direction have been already made.Comment: To be published in:"Supernovae and Gamma Ray Bursters", Lecture Notes
in Physics (http://link.springer.de/series/lnpp
A hot terrestrial planet orbiting the bright M dwarf L 168-9 unveiled by TESS
We report the detection of a transiting super-Earth-sized planet (R = 1.39 ± 0.09 R⊕ ) in a 1.4-day orbit around L 168-9 (TOI-134), a bright M1V dwarf (V = 11, K = 7.1) located at 25.15 ± 0.02 pc. The host star was observed in the first sector of the Transiting Exoplanet Survey Satellite (TESS) mission. For confirmation and planet mass measurement purposes, this was followed up with ground-based photometry, seeing-limited and high-resolution imaging, and precise radial velocity (PRV) observations using the HARPS and Magellan/PFS spectrographs. By combining the TESS data and PRV observations, we find the mass of L 168-9 b to be 4.60 ± 0.56 M⊕ and thus the bulk density to be 1.74-0.33+0.44 times higher than that of the Earth. The orbital eccentricity is smaller than 0.21 (95% confidence). This planet is a level one candidate for the TESS mission's scientific objective of measuring the masses of 50 small planets, and it is one of the most observationally accessible terrestrial planets for future atmospheric characterization
A pair of tess planets spanning the radius valley around the nearby mid-m dwarf ltt 3780
We present the confirmation of two new planets transiting the nearby mid-M dwarf LTT 3780 (TIC 36724087, TOI-732, V = 13.07, K s = 8.204, R s = 0.374 R o˙, M s = 0.401 M o˙, d = 22 pc). The two planet candidates are identified in a single Transiting Exoplanet Survey Satellite sector and validated with reconnaissance spectroscopy, ground-based photometric follow-up, and high-resolution imaging. With measured orbital periods of P b = 0.77, P c = 12.25 days and sizes r p,b = 1.33 ± 0.07, r p,c = 2.30 ± 0.16 R ⊕, the two planets span the radius valley in period-radius space around low-mass stars, thus making the system a laboratory to test competing theories of the emergence of the radius valley in that stellar mass regime. By combining 63 precise radial velocity measurements from the High Accuracy Radial velocity Planet Searcher (HARPS) and HARPS-N, we measure planet masses of mpb 2.62+ 0.48 and-0.46= mpc 8.6+1.6-1.3 M⊕, which indicates that LTT 3780b has a bulk composition consistent with being Earth-like, while LTT 3780c likely hosts an extended H/He envelope. We show that the recovered planetary masses are consistent with predictions from both photoevaporation and core-powered mass-loss models. The brightness and small size of LTT 3780, along with the measured planetary parameters, render LTT 3780b and c as accessible targets for atmospheric characterization of planets within the same planetary system and spanning the radius valley
- …