639 research outputs found

    Mode-locking and mode-competition in a non-equilibrium solid-state condensate

    Full text link
    A trapped polariton condensate with continuous pumping and decay is analyzed using a generalized Gross-Pitaevskii model. Whereas an equilibrium condensate is characterized by a macroscopic occupation of a ground state, here the steady-states take more general forms. Some are characterized by a large population in an excited state, and others by large populations in several states. In the latter case, the highly-populated states synchronize to a common frequency above a critical density. Estimates for the critical density of this synchronization transition are consistent with experiments.Comment: 5 pages, 2 figure

    The new physics of non-equilibrium condensates: insights from classical dynamics

    Full text link
    We discuss the dynamics of classical Dicke-type models, aiming to clarify the mechanisms by which coherent states could develop in potentially non-equilibrium systems such as semiconductor microcavities. We present simulations of an undamped model which show spontaneous coherent states with persistent oscillations in the magnitude of the order parameter. These states are generalisations of superradiant ringing to the case of inhomogeneous broadening. They correspond to the persistent gap oscillations proposed in fermionic atomic condensates, and arise from a variety of initial conditions. We show that introducing randomness into the couplings can suppress the oscillations, leading to a limiting dynamics with a time-independent order parameter. This demonstrates that non-equilibrium generalisations of polariton condensates can be created even without dissipation. We explain the dynamical origins of the coherence in terms of instabilities of the normal state, and consider how it can additionally develop through scattering and dissipation.Comment: 10 pages, 4 figures, submitted for a special issue of J. Phys.: Condensed Matter on "Optical coherence and collective phenomena in nanostructures". v2: added discussion of links to exact solution

    Mechanism for the failure of the Edwards hypothesis in the SK spin glass

    Full text link
    The dynamics of the SK model at T=0 starting from random spin configurations is considered. The metastable states reached by such dynamics are atypical of such states as a whole, in that the probability density of site energies, p(λ)p(\lambda), is small at λ=0\lambda=0. Since virtually all metastable states have a much larger p(0)p(0), this behavior demonstrates a qualitative failure of the Edwards hypothesis. We look for its origins by modelling the changes in the site energies during the dynamics as a Markov process. We show how the small p(0)p(0) arises from features of the Markov process that have a clear physical basis in the spin-glass, and hence explain the failure of the Edwards hypothesis.Comment: 5 pages, new title, modified text, additional reference

    Microcavity quantum-dot systems for non-equilibrium Bose-Einstein condensation

    Get PDF
    We review the practical conditions required to achieve a non-equilibrium BEC driven by quantum dynamics in a system comprising a microcavity field mode and a distribution of localised two-level systems driven to a step-like population inversion profile. A candidate system based on eight 3.8nm layers of In(0.23)Ga(0.77)As in GaAs shows promising characteristics with regard to the total dipole strength which can be coupled to the field mode.Comment: 4 pages, 4 figures, to be published in J. Phys. Conf. Ser. for QD201

    Finite-size fluctuations and photon statistics near the polariton condensation transition in a single-mode microcavity

    Full text link
    We consider polariton condensation in a generalized Dicke model, describing a single-mode cavity containing quantum dots, and extend our previous mean-field theory to allow for finite-size fluctuations. Within the fluctuation-dominated regime the correlation functions differ from their (trivial) mean-field values. We argue that the low-energy physics of the model, which determines the photon statistics in this fluctuation-dominated crossover regime, is that of the (quantum) anharmonic oscillator. The photon statistics at the crossover are different in the high- and low- temperature limits. When the temperature is high enough for quantum effects to be neglected we recover behavior similar to that of a conventional laser. At low enough temperatures, however, we find qualitatively different behavior due to quantum effects.Comment: 12 pages, 5 figures. v2: Revised version with minor corrections (typos, added reference, correction in argument following Eq. 25). v3: further typos correcte

    Modulated Floquet Topological Insulators

    Full text link
    Floquet topological insulators are topological phases of matter generated by the application of time-periodic perturbations on otherwise conventional insulators. We demonstrate that spatial variations in the time-periodic potential lead to localized quasi-stationary states in two-dimensional systems. These states include one-dimensional interface modes at the nodes of the external potential, and fractionalized excitations at vortices of the external potential. We also propose a setup by which light can induce currents in these systems. We explain these results by showing a close analogy to px+ipy superconductors

    Androgen receptor mutations in prostate cancer

    Get PDF
    We analyzed the frequency and relevance of mutations in the coding region of the androgen receptor (AR) in genomic DNA extracted from 137 specimens of prostate cancer. The specimens were obtained from the primary tumors of patients affected by stage B disease [15 nonmicrodissected (group 1A) and 84 microdissected (group 1B)] and from the metastatic deposits of individuals with stage D1 disease [8 nonmicrodissected (group 2A) and 30 microdissected (group 2B)] who had not undergone androgen ablation therapy. The study was conducted by PCR-single strand conformational polymorphism (SSCP) analysis of exons 2-8 in the four groups and direct sequence analysis of exon 1 in group 1B. As positive and negative controls, we used genomic DNA extracted from genital skin fibroblasts of patients affected by various forms of androgen resistance with known mutations in the AR. To control for genetic instability, PCR-SSCP analysis of exon 2 of the human progesterone receptor was carried out on each specimen. The overall number of mutations detected was 11 (8%). No mutations were detected in any of the 99 patients with stage B disease. Eleven mutations were detected in exons 2-8 in 8 of the 38 patients with stage D1 disease (all in group 2B). Simultaneous analysis of exon 2 of the progesterone receptor was carried out, and no SSCP changes were identified. These data suggest that AR mutations are rare and presumably do not play a role in the initial phase of prostatic carcinogenesis. The presence of a significant number of AR mutations in metastatic disease indicates that mutations of this molecule may play a role in the most advanced phases of the natural history of this disease, either by facilitating growth or acquisition of the metastatic phenotype

    Far-off-resonant wave interaction in one-dimensional photonic crystals with quadratic nonlinearity

    Full text link
    We extend a recently developed Hamiltonian formalism for nonlinear wave interaction processes in spatially periodic dielectric structures to the far-off-resonant regime, and investigate numerically the three-wave resonance conditions in a one-dimensional optical medium with χ(2)\chi^{(2)} nonlinearity. In particular, we demonstrate that the cascading of nonresonant wave interaction processes generates an effective χ(3)\chi^{(3)} nonlinear response in these systems. We obtain the corresponding coupling coefficients through appropriate normal form transformations that formally lead to the Zakharov equation for spatially periodic optical media.Comment: 14 pages, 4 figure
    • …
    corecore