8 research outputs found

    Coalescence modeling of intrainfection Bacillus anthracis populations allows estimation of infection parameters in wild populations

    No full text
    Bacillus anthracis, the etiological agent of anthrax, is a well-established model organism. For B. anthracis and most other infectious diseases, knowledge regarding transmission and infection parameters in natural systems, in large part, comprises data gathered from closely controlled laboratory experiments. Fatal, natural anthrax infections transmit the bacterium through new host−pathogen contacts at carcass sites, which can occur years after death of the previous host. For the period between contact and death, all of our knowledge is based upon experimental data from domestic livestock and laboratory animals. Here we use a noninvasive method to explore the dynamics of anthrax infections, by evaluating the terminal diversity of B. anthracis in anthrax carcasses. We present an application of population genetics theory, specifically, coalescence modeling, to intrainfection populations of B. anthracis to derive estimates for the duration of the acute phase of the infection and effective population size converted to the number of colony-forming units establishing infection in wild plains zebra (Equus quagga). Founding populations are small, a few colony-forming units, and infections are rapid, lasting roughly between 1 d and 3 d in the wild. Our results closely reflect experimental data, showing that small founding populations progress acutely, killing the host within days. We believe this method is amendable to other bacterial diseases from wild, domestic, and human systems

    Spatial and seasonal variation in the prevalence of Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato in questing Ixodes ricinus ticks in Norway

    Get PDF
    Background. Understanding the variation in prevalence of Borrelia burgdorferi sensu lato (Lyme Borreliosis Spirochaetes, LBS) and Anaplasma phagocytophilum (causing tick-borne fever in ruminants and human granulocytic ehrlichiosis) in ticks is vital from both a human and an animal disease perspective to target the most effective mitigation measures. From the host competence hypothesis, we predicted that prevalence of LBS would decrease with red deer density, while prevalence of A. phagocytophilum would increase. Methods. Based on a sample of 112 adult and 686 nymphal Ixodes ricinus ticks collected with flagging during questing from 31 transects (4–500 m long) corresponding to individual seasonal home ranges of 41 red deer along the west coast of Norway, we tested whether there were spatial and seasonal variations in prevalence with a special emphasis on the population density of the most common large host in this area, the red deer (Cervus elaphus). We used a multiplex real-time PCR assay for detection of A. phagocytophilum and LBS. Results. Prevalence of LBS was higher in adult female ticks (21.6%) compared to adult male ticks (11.5%) and nymphs (10.9%), while prevalence was similar among stages for prevalence of A. phagocytophilum (8.8%). Only partly consistent with predictions, we found a lower prevalence of LBS in areas of high red deer density, while there was no relationship between red deer density and prevalence of A. phagocytophilum in ticks. Prevalence of both bacteria was much higher in ticks questing in May compared to August. Conclusions. Our study provides support to the notion that spatial variation in host composition forms a role for prevalence of LBS in ticks also in a northern European ecosystem, while no such association was found for A. phagocytophilum. Further studies are needed to fully understand the similar seasonal pattern of prevalence of the two pathogens

    A classification framework for Bacillus anthracis defined by global genomic structure

    No full text
    Bacillus anthracis , the causative agent of anthrax, is a considerable global health threat affecting wildlife, livestock, and the general public. In this study, whole‐genome sequence analysis of over 350 B. anthracis isolates was used to establish a new high‐resolution global genotyping framework that is both biogeographically informative and compatible with multiple genomic assays. The data presented in this study shed new light on the diverse global dissemination of this species and indicate that many lineages may be uniquely suited to the geographic regions in which they are found. In addition, we demonstrate that plasmid genomic structure for this species is largely consistent with chromosomal population structure, suggesting vertical inheritance in this bacterium has contributed to its evolutionary persistence. This classification methodology is the first based on population genomic structure for this species and has potential use for local and broader institutions seeking to understand both disease outbreak origins and recent introductions. In addition, we provide access to a newly developed genotyping script as well as the full whole‐genome sequence analyses output for this study, allowing future studies to rapidly employ and append their data in the context of this global collection. This framework may act as a powerful tool for public health agencies, wildlife disease laboratories, and researchers seeking to utilize and expand this classification scheme for further investigations into B. anthracis evolution

    Contrasting emergence of Lyme disease across ecosystems

    Get PDF
    Global environmental changes are causing Lyme disease to emerge in Europe. The life cycle of Ixodes ricinus, the tick vector of Lyme disease, involves an ontogenetic niche shift, from the larval and nymphal stages utilizing a wide range of hosts, picking up the pathogens causing Lyme disease from small vertebrates, to the adult stage depending on larger (non-transmission) hosts, typically deer. Because of this complexity the role of different host species for emergence of Lyme disease remains controversial. Here, by analysing long-term data on incidence in humans over a broad geographical scale in Norway, we show that both high spatial and temporal deer population density increase Lyme disease incidence. However, the trajectories of deer population sizes play an overall limited role for the recent emergence of the disease. Our study suggests that managing deer populations will have some effect on disease incidence, but that Lyme disease may nevertheless increase as multiple drivers are involved

    The Genome of the Great Gerbil Reveals Species-Specific Duplication of an MHCII Gene

    No full text
    Abstract The great gerbil (Rhombomys opimus) is a social rodent living in permanent, complex burrow systems distributed throughout Central Asia, where it serves as the main host of several important vector-borne infectious pathogens including the well-known plague bacterium (Yersinia pestis). Here, we present a continuous annotated genome assembly of the great gerbil, covering over 96% of the estimated 2.47-Gb genome. Taking advantage of the recent genome assemblies of the sand rat (Psammomys obesus) and the Mongolian gerbil (Meriones unguiculatus), comparative immunogenomic analyses reveal shared gene losses within TLR gene families (i.e., TLR8, TLR10, and the entire TLR11-subfamily) for Gerbillinae, accompanied with signs of diversifying selection of TLR7 and TLR9. Most notably, we find a great gerbil-specific duplication of the MHCII DRB locus. In silico analyses suggest that the duplicated gene provides high peptide binding affinity for Yersiniae epitopes as well as Leishmania and Leptospira epitopes, putatively leading to increased capability to withstand infections by these pathogens. Our study demonstrates the power of whole-genome sequencing combined with comparative genomic analyses to gain deeper insight into the immunogenomic landscape of the great gerbil and its close relatives

    Evolutionary selection of biofilm-mediated extended phenotypes in Yersinia pestis in response to a fluctuating environment

    No full text
    Yersinia pestis is transmitted from fleas to rodents when the bacterium develops an extensive biofilm in the foregut of a flea, starving it into a feeding frenzy, or, alternatively, during a brief period directly after feeding on a bacteremic host. These two transmission modes are in a trade-off regulated by the amount of biofilm produced by the bacterium. Here by investigating 446 global isolated Y. pestis genomes, including 78 newly sequenced isolates sampled over 40 years from a plague focus in China, we provide evidence for strong selection pressures on the RNA polymerase ω-subunit encoding gene rpoZ. We demonstrate that rpoZ variants have an increased rate of biofilm production in vitro, and that they evolve in the ecosystem during colder and drier periods. Our results support the notion that the bacterium is constantly adapting—through extended phenotype changes in the fleas—in response to climate-driven changes in the niche

    Breaking Bad: Public Pensions and the Loss of that Old-Time Fiscal Religion

    No full text
    corecore