8 research outputs found
Computational reverse mathematics and foundational analysis
Reverse mathematics studies which subsystems of second order arithmetic are
equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main
philosophical application of reverse mathematics proposed thus far is
foundational analysis, which explores the limits of different foundations for
mathematics in a formally precise manner. This paper gives a detailed account
of the motivations and methodology of foundational analysis, which have
heretofore been largely left implicit in the practice. It then shows how this
account can be fruitfully applied in the evaluation of major foundational
approaches by a careful examination of two case studies: a partial realization
of Hilbert's program due to Simpson [1988], and predicativism in the extended
form due to Feferman and Sch\"{u}tte.
Shore [2010, 2013] proposes that equivalences in reverse mathematics be
proved in the same way as inequivalences, namely by considering only
-models of the systems in question. Shore refers to this approach as
computational reverse mathematics. This paper shows that despite some
attractive features, computational reverse mathematics is inappropriate for
foundational analysis, for two major reasons. Firstly, the computable
entailment relation employed in computational reverse mathematics does not
preserve justification for the foundational programs above. Secondly,
computable entailment is a complete relation, and hence employing it
commits one to theoretical resources which outstrip those available within any
foundational approach that is proof-theoretically weaker than
.Comment: Submitted. 41 page
Set existence principles and closure conditions: unravelling the standard view of reverse mathematics
It is a striking fact from reverse mathematics that almost all theorems of countable and countably representable mathematics are equivalent to just five subsystems of second order arithmetic. The standard view is that the significance of these equivalences lies in the set existence principles that are necessary and sufficient to prove those theorems. In this article I analyse the role of set existence principles in reverse mathematics, and argue that they are best understood as closure conditions on the powerset of the natural numbers
Set existence principles and closure conditions: unravelling the standard view of reverse mathematics
It is a striking fact from reverse mathematics that almost all theorems of countable and countably representable mathematics are equivalent to just five subsystems of second order arithmetic. The standard view is that the significance of these equivalences lies in the set existence principles that are necessary and sufficient to prove those theorems. In this article I analyse the role of set existence principles in reverse math- ematics, and argue that they are best understood as closure conditions on the powerset of the natural numbers
Tarski
Alfred Tarski was one of the greatest logicians of the twentieth century. His influence comes not merely through his own work but from the legion of students who pursued his projects, both in Poland and Berkeley. This chapter focuses on three key areas of Tarski's research, beginning with his groundbreaking studies of the concept of truth. Tarski's work led to the creation of the area of mathematical logic known as model theory and prefigured semantic approaches in the philosophy of language and philosophical logic, such as Kripke's possible worlds semantics for modal logic. We also examine the paradoxical decomposition of the sphere known as the Banach–Tarski paradox. Finally we examine Tarski's work on decidable and undecidable theories, which he carried out in collaboration with students such as Mostowski, Presburger, Robinson and others
Arrow's theorem, ultrafilters, and reverse mathematics
This paper initiates the reverse mathematics of social choice theory, studying Arrow's impossibility theorem and related results including Fishburn's possibility theorem and the Kirman–Sondermann theorem within the framework of reverse mathematics. We formalise fundamental notions of social choice theory in second-order arithmetic, yielding a definition of countable society which is tractable in RCA0. We then show that the Kirman–Sondermann analysis of social welfare functions can be carried out in RCA0. This approach yields a proof of Arrow's theorem in RCA0, and thus in PRA, since Arrow's theorem can be formalised as a Π01 sentence. Finally we show that Fishburn's possibility theorem for countable societies is equivalent to ACA0 over RCA0
Review of Denis R. Hirschfeldt, Slicing the Truth: On the Computability Theoretic and Reverse Mathematical Analysis of Combinatorial Principles
The present volume is an introduction to the use of tools from computability theory and reverse mathematics to study combinatorial principles, in particular Ramsey's theorem and special cases such as Ramsey's theorem for pairs. It would serve as an excellent textbook for graduate students who have completed a course on computability theory