236 research outputs found

    Cosmic Dynamics in the Chameleon Cosmology

    Full text link
    We study in this paper chameleon cosmology applied to Friedmann-Robertson-Walker space, which gives rise to the equation of state (EoS) parameter larger than -1 in the past and less than -1 today, satisfying current observations. We also study cosmological constraints on the model using the time evolution of the cosmological redshift of distant sources which directly probes the expansion history of the universe. Due to the evolution of the universe's expansion rate, the model independent Cosmological Redshift Drift (CRD)test is expected to experience a small, systematic drift as a function of time. The model is supported by the observational data obtained from the test.Comment: 16 pages, 9 figure

    Construction of nonsingular cosmological solutions in string theories

    Get PDF
    We study nonsingular cosmological scenarios in a general DD-dimensional string effective action of the dilaton-modulus-axion system in the presence of the matter source. In the standard dilatonic Brans-Dicke parameter (ω=1\omega=-1) with radiation, we analytically obtain singularity-free bouncing solutions where the universe starts out in a state with a finite curvature and evolves toward the weakly coupled regime. We apply this analytic method to the string-gas cosmology including the massive state in addition to the leading massless state (radiation), with and without the axion. We numerically find bouncing solutions which asymptotically approach an almost radiation-dominant universe with a decreasing curvature irrespective of the presence of the axion, implying that inclusion of the matter source is crucial for the existence of such solutions for ω=1\omega=-1. In the theories with ω1\omega \ne -1, it is possible to obtain complete regular bouncing solutions with a finite dilaton and curvature in both past and future asymptotics for the general dimension, DD. We also discuss the case where dilatonic higher-order corrections are involved to the tree-level effective action and demonstrate that the presence of axion/modulus fields and the matter source does not significantly affect the dynamics of the dilaton-driven inflation and the subsequent graceful exit.Comment: 27 pages, 6 eps figure

    Gravity from Quantum Information

    Full text link
    It is suggested that the Einstein equation can be derived from Landauer's principle applied to an information erasing process at a local Rindler horizon and Jacobson's idea linking the Einstein equation with thermodynamics. When matter crosses the horizon, the information of the matter disappears and the horizon entanglement entropy increases to compensate the entropy reduction. The Einstein equation describes an information-energy relation during this process, which implies that entropic gravity is related to the quantum entanglement of the vacuum and has a quantum information theoretic origin.Comment: 7 pages, revtex4-1, 2 figures, recent supporting results adde

    The accelerating universe and a limiting curvature proposal

    Get PDF
    We consider the hypothesis of a limiting minimal curvature in gravity as a way to construct a class of theories exhibiting late-time cosmic acceleration. Guided by the minimal curvature conjecture (MCC) we are naturally lead to a set of scalar tensor theories in which the scalar is non-minimally coupled both to gravity and to the matter Lagrangian. The model is compared to the Lambda Cold Dark Matter concordance model and to the observational data using the gold SNeIa sample of Riess et. al. (2004). An excellent fit to the data is achieved. We present a toy model designed to demonstrate that such a new, possibly fundamental, principle may be responsible for the recent period of cosmological acceleration. Observational constraints remain to be imposed on these models.Comment: 22 pages, 7 figures; revised version to appear in JCAP; references adde

    Effective Field Theory Approach to String Gas Cosmology

    Get PDF
    We derive the 4D low energy effective field theory for a closed string gas on a time dependent FRW background. We examine the solutions and find that although the Brandenberger-Vafa mechanism at late times no longer leads to radion stabilization, the radion rolls slowly enough that the scenario is still of interest. In particular, we find a simple example of the string inspired dark matter recently proposed by Gubser and Peebles.Comment: 19 pages, 2 figures, comments adde

    Does brane cosmology have realistic principles?

    Full text link
    The maximal symmetry, or Perfect Cosmological Principle(PCP), that prevents AdS type spaces from degenerating into anti-inflationary collapse is argued to be unphysical. For example, the simple requirement that brane-bulk models should be the result of having evolved from even more energetic string phenomena picks out a preferred time direction. We question whether quantum cosmological reasoning can be applied in any meaningful way to obtain, what are essentially, classical constructs . An alternative scheme is to more readily accept the PCP and allow the branes to also become eternal. A perpetually expanding and contracting brane model could be driven by the presence of charged black holes in the AdS bulk, that effectively violates the weak-energy condition as singularities are approached. This can be contrasted with the so-called Ekpyrotic universe which also closely accepts the PCP. This being broken only by occasional collisions between branes, that can then simulate a big bang cosmology.Comment: extended version and title chang

    Isotropization in Brane Gas Cosmology

    Get PDF
    Brane Gas Cosmology (BGC) is an approach to unifying string theory and cosmology in which matter is described by a gas of strings and branes in a dilaton gravity background. The Universe is assumed to start out with all spatial dimensions compact and small. It has previously been shown that in this context, in the approximation of neglecting inhomogeneities and anisotropies, there is a dynamical mechanism which allows only three spatial dimensions to become large. However, previous studies do not lead to any conclusions concerning the isotropy or anisotropy of these three large spatial dimensions. Here, we generalize the equations of BGC to the anisotropic case, and find that isotropization is a natural consequence of the dynamics.Comment: 11 pages, 4 eps figures, references adde

    On the Origin of Entropic Gravity and Inertia

    Full text link
    It was recently suggested that quantum field theory is not fundamental but emerges from the loss of phase space information about matter crossing causal horizons. Possible connections between this formalism and Verlinde's entropic gravity and Jacobson's thermodynamic gravity are proposed. The holographic screen in Verlinde's formalism can be identified as local Rindler horizons and its entropy as that of the bulk fields beyond the horizons. This naturally resolves some issues on entropic gravity. The quantum fluctuation of the fields is the origin of the thermodynamic nature of entropic gravity. It is also suggested that inertia is related to dragging Rindler horizons.Comment: 9 pages, revtex4-1, 3 figures, accepted for publication in Foundations of Physic

    String windings in the early universe

    Full text link
    We study string dynamics in the early universe. Our motivation is the proposal of Brandenberger and Vafa, that string winding modes may play a key role in decompactifying three spatial dimensions. We model the universe as a homogeneous but anisotropic 9-torus filled with a gas of excited strings. We adopt initial conditions which fix the dilaton and the volume of the torus, but otherwise assume all states are equally likely. We study the evolution of the system both analytically and numerically to determine the late-time behavior. We find that, although dynamical evolution can indeed lead to three large spatial dimensions, such an outcome is not statistically favored.Comment: 26 pages, LaTeX, 4 eps figure

    Reconstructing Single Field Inflationary Actions From CMBR Data

    Full text link
    This paper describes a general program for deriving the action of single field inflation models with nonstandard kinetic energy terms using CMBR power spectrum data. This method assumes that an action depends on a set of undetermined functions, each of which is a function of either the inflaton wave function or its time derivative. The scalar, tensor and non-gaussianity of the curvature perturbation spectrum are used to derive a set of reconstruction equations whose solution set can specify up to three of the undetermined functions. The method is then used to find the undetermined functions in various types of actions assuming power law type scalar and tensor spectra. In actions that contain only two unknown functions, the third reconstruction equation implies a consistency relation between the non-gaussianty, sound speed and slow roll parameters. In particular we focus on reconstructing a generalized DBI action with an unknown potential and warp factor. We find that for realistic scalar and tensor spectra, the reconstructed warp factor and potential are very similar to the theoretically derived result. Furthermore, physical consistency of the reconstructed warp factor and potential imposes strict constraints on the scalar and tensor spectral indices.Comment: 33 pages, 3 figures: v3 - References adde
    corecore