395 research outputs found

    Biosensor measurement of purine release from cerebellar cultures and slices

    Get PDF
    We have previously described an action-potential and Ca2+-dependent form of adenosine release in the molecular layer of cerebellar slices. The most likely source of the adenosine is the parallel fibres, the axons of granule cells. Using microelectrode biosensors, we have therefore investigated whether cultured granule cells (from postnatal day 7–8 rats) can release adenosine. Although no purine release could be detected in response to focal electrical stimulation, purine (adenosine, inosine or hypoxanthine) release occurred in response to an increase in extracellular K+ concentration from 3 to 25 mM coupled with addition of 1 mM glutamate. The mechanism of purine release was transport from the cytoplasm via an ENT transporter. This process did not require action-potential firing but was Ca2+dependent. The major purine released was not adenosine, but was either inosine or hypoxanthine. In order for inosine/hypoxanthine release to occur, cultures had to contain both granule cells and glial cells; neither cellular component was sufficient alone. Using the same stimulus in cerebellar slices (postnatal day 7–25), it was possible to release purines. The release however was not blocked by ENT blockers and there was a shift in the Ca2+ dependence during development. This data from cultures and slices further illustrates the complexities of purine release, which is dependent on cellular composition and developmental stage

    Treating type 2 diabetes through insulin resistance

    Get PDF
    Type 2 diabetes is an insidious disorder, with micro and/or macrovascular and nervous damage occurring in many patients before diagnosis. This damage is caused by hyperglycaemia and the diverse effects of insulin resistance. Obesity, in particular central obesity, is a strong pre-disposing factor for type 2 diabetes. Skeletal muscle is the main site of insulin-stimulated glucose disposal and appears to be the first organ that becomes insulin resistant in the diabetic state, with later involvement of adipose tissue and the liver. This study has investigated the use of novel agents to ameliorate insulin-resistance in skeletal muscle as a means of identifying intervention sites against insulin resistance and of improving glucose uptake and metabolism by skeletal muscle. Glucose uptake was measured in vitro by cultured L6 myocytes and isolated muscles from normal and obese diabetic ob/ob mice, using either the tritiated non-metabolised glucose analogue 2-deoxy-D-glucose or by glucose disposal. Agents studied included lipoic acid, isoferulic acid, bradykinin, lipid mobilising factor (provisionally synonymous with Zinca2 glycoprotein) and the trace elements lithium, selenium and chromium. The putative role of TNFa in insulin resistance was also investigated. Lipoic acid improved insulin-stimulated glucose uptake in normal and insulin resistance murine muscles, as well as cultured myocytes. Isoferulic acid, bradykinin and LMF also produced a transient increase in glucose uptake in cultured myocytes. Physiological concentrations of TNFa were found to cause insulin resistance in cultured, but no in excised murine muscles. The effect of the M2 metabolite of the satiety-inducing agent sibutramine on lipolysis in excised murine and human adipocytes was also investigated. M2 increased lipolysis from normal lean and obese ob/ob mouse adipocytes. Arguably the most important observation was that M2 also increased the lipolytic rate in adipocytes from catecholamine resistant obese subjects. The studies reported in this thesis indicate that a diversity of agents can improve glucose uptake and ameliorate insulin resistance. It is likely that these agents are acting via different pathways. This thesis has also shown that M2 can induce lipolysis in both rodent and human adipocytes. M2 hence has potential to directly reduce adiposity, in addition to well documented effects via the central nervous system

    Nano-droplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer

    No full text
    The authors present the deposition of nanoscale droplets of Cr using femtosecond Ti:Sapphire Laser-Induced Forward Transfer. Deposits around 300 nm in diameter, significantly smaller than any previously reported, are obtained from a 30 nm thick source film. Deposit size, morphology, and adhesion to a receiver substrate as functions of applied laser fluence are investigated. We show that deposits can be obtained from previously irradiated areas of the source material film with negligible loss of deposition quality, allowing sub-spot size period microarrays to be produced without the need to move the source film

    Laser operation of a Tm:Y<sub>2</sub>O<sub>3</sub> planar waveguide

    No full text
    We demonstrate the first Tm-doped yttria planar waveguide laser to our knowledge, grown by pulsed laser deposition. A maximum output power of 35 mW at 1.95 µm with 9% slope efficiency was achieved from a 12 µm-thick film grown on a Y3Al5O12 substrate

    Anisotropic focusing characteristics of micro-domain structures within crystalline Sr<sub>0.61</sub>Ba<sub>0.39</sub>Nb<sub>2</sub>O<sub>6</sub> : the crystal ball

    No full text
    We report the anisotropic focusing characteristics of a spherically configured region of micro-domains that have been induced within a cubic shaped crystal of Ce:doped Sr0.61Ba0.39Nb2O6. The internal spherical structure focuses extraordinary polarised light, but not ordinary polarised. The spherical region, which is easily observed via scattering, is formed as the crystal cools down, after a repoling cycle through the Curie temperature, with an applied field. Analytic modelling of the thermal gradients that exist within the crystal during cooling reveals a small (&lt; 1°) temperature difference between the central and outside regions. The similarity in shape between these temperature profiles and the observed scattering region suggests a possible mechanism for the growth of this spherical micro-domained structure

    The biosynthesis of ribonucleic acid in virus-infected and uninfected cells

    Get PDF
    Abstract Not Provided

    Pulsed laser deposition for growth of high quality epitaxial garnet films for low threshold waveguide lasers

    No full text
    Pulsed laser deposition (PLD) is a mature technique capable of producing extremely high quality epitaxial single crystalline films. We have grown Nd:doped garnet films of GGG (Gd The talk will summarise our progress using conventional (single beam) PLD in thin-film and waveguide growth, using both nanosecond and femtosecond lasers, and also introduce our new directions in tri-beam PLD (three targets, three lasers) for growth of some interesting, complex and perhaps impossible structures, such as Gaussian doping, internal voids and even helically doped structures

    Reforming Tennessee\u27s Rules of Appellate Procedure: Separate Notices of Appeal...Or Not?

    Get PDF
    When it comes to the filing of separate notices of appeal, Tennessee’s Rules of Appellate Procedure contain an internal inconsistency. This inconsistency, which has yielded two conflicting and incompatible lines of judicial interpretation, undermines the coherence of Tennessee appellate procedure and poses unfairly contradictory outcomes for similarly situated appellants. To resolve this inconsistency, Tennessee’s Rules of Appellate Procedure should be reformed

    Science with coffee and hobnobs

    Full text link
    Many parents or guardians of primary school pupils have little knowledge of science, and many lack confidence in their ability to help their children, though most welcome the chance to do so. We describe our experiences running a series of meetings in the form of coffee sessions at local primary schools, where parents can increase their knowledge and confidence in the science their children study, and engage in simple experiments with their children to apply the knowledge they gain. We discuss how this programme can be instrumental in improving the profile of scientific education and scientific careers for children of a young age

    Segment-scale variations in seafloor volcanic and tectonic processes from multibeam sonar imaging, Mid-Atlantic Ridge Rainbow region (35°45′–36°35′N)

    Get PDF
    Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 17 (2016): 3560–3579, doi:10.1002/2016GC006433.Along-axis variations in melt supply and thermal structure can lead to significant variations in the mode of crustal accretion at mid-ocean ridges. We examine variations in seafloor volcanic and tectonic processes on the scale of individual ridge segments in a region of the slow spreading Mid-Atlantic Ridge (35°45′–36°35′N) centered on the Rainbow nontransform discontinuity (NTD). We use multibeam sonar backscatter amplitude data, taking advantage of multifold and multidirectional coverage from the MARINER geophysical study to create a gridded compilation of seafloor reflectivity, and interpret the sonar image within the context of other data to examine seafloor properties and identify volcanic flow fields and tectonic features. Along the spreading segments, differences in volcanic productivity, faulting, eruption style, and frequency correlate with inferred magma supply. Regions of low magma supply are associated with more widely spaced faults, and larger volcanic flow fields that are more easily identified in the backscatter image. Identified flow fields with the highest backscatter occur near the ends of ridge segments. Their relatively smooth topography contrasts with the more hummocky, cone-dominated terrain that dominates most of the neovolcanic zone. Patches of seafloor with high, moderately high, and low backscatter intensity across the Rainbow massif are spatially correlated with observations of basalt, gabbro and serpentinized peridotite, and sediment, respectively. Large detachment faults have repeatedly formed along the inside corners of the Rainbow NTD, producing a series of oceanic core complexes along the wake of the NTD. A new detachment fault is currently forming in the ridge segment just north of the now inactive Rainbow massif.National Science Foundation Grant Numbers: OCE-0961151, OCE-09616802017-03-0
    • …
    corecore