151 research outputs found

    Evaporative evolution of a Na–Cl–NO(3)–K–Ca–SO(4)–Mg–Si brine at 95°C: Experiments and modeling relevant to Yucca Mountain, Nevada

    Get PDF
    A synthetic Topopah Spring Tuff water representative of one type of pore water at Yucca Mountain, NV was evaporated at 95°C in a series of experiments to determine the geochemical controls for brines that may form on, and possibly impact upon the long-term integrity of waste containers and drip shields at the designated high-level, nuclear-waste repository. Solution chemistry, condensed vapor chemistry, and precipitate mineralogy were used to identify important chemical divides and to validate geochemical calculations of evaporating water chemistry using a high temperature Pitzer thermodynamic database. The water evolved toward a complex "sulfate type" brine that contained about 45 mol % Na, 40 mol % Cl, 9 mol % NO(3), 5 mol % K, and less than 1 mol % each of SO(4), Ca, Mg, ∑CO(2)(aq), F, and Si. All measured ions in the condensed vapor phase were below detection limits. The mineral precipitates identified were halite, anhydrite, bassanite, niter, and nitratine. Trends in the solution composition and identification of CaSO(4 )solids suggest that fluorite, carbonate, sulfate, and magnesium-silicate precipitation control the aqueous solution composition of sulfate type waters by removing fluoride, calcium, and magnesium during the early stages of evaporation. In most cases, the high temperature Pitzer database, used by EQ3/6 geochemical code, sufficiently predicts water composition and mineral precipitation during evaporation. Predicted solution compositions are generally within a factor of 2 of the experimental values. The model predicts that sepiolite, bassanite, amorphous silica, calcite, halite, and brucite are the solubility controlling mineral phases

    NYESO-1/LAGE-1s and PRAME Are Targets for Antigen Specific T Cells in Chondrosarcoma following Treatment with 5-Aza-2-Deoxycitabine

    Get PDF
    Chondrosarcoma has no proven systemic option in the metastatic setting. The development of a non-cross-resistant strategy, such as cellular immunotherapy using antigen-specific T cells would be highly desirable. NY-ESO-1 and PRAME are members of the Cancer Testis Antigen (CTA) family that have been identified as promising targets for T cell therapy. LAGE-1 is a cancer testis antigen 90% homologous to NY-ESO-1, sharing the 157-165 A*0201 NY-ESO-1 epitope with its transcript variant, LAGE-1s. A number of CTA's have been induced using 5-Aza-2-Deoxycitabine (5-Aza-dC) in other cancers. We sought to evaluate the feasibility of targeting chondrosarcoma tumors using NY-ESO-1/LAGE-1s and PRAME specific T cells using 5-Aza-dC to induce antigen expression.We used 11 flash frozen tumors from the University of Washington tumor bank to test for the expression of NY-ESO-1, PRAME, LAGE-1s and LAGE-1L in chondrosarcoma tumors. Using four chondrosarcoma cell lines we tested the expression of these CTA's with and without 5-Aza-dC treatments. Finally, using NY-ESO-1/LAGE-1s and PRAME specific effectors that we generated from sarcoma patients, we evaluated the ability of these T cells to lyse A*0201 expressing chondrosarcoma cell lines in vitro both with and without 5-Aza-dC treatment.A minority (36%) of chondrosarcoma tumors expressed either NY-ESO-1 or LAGE-1s at >10% of our reference value and none expressed PRAME at that level. However, in all four of the chondrosarcoma cell lines tested, NY-ESO-1 and PRAME expression could be induced following treatment with 5-Aza-dC including in cell lines where expression was absent or barely detectable. Furthermore, NY-ESO-1/LAGE-1s and PRAME specific CD8+ effector T cells were able to specifically recognize and lyse A*0201 expressing chondrosarcoma cell lines following 5-Aza-dC treatment.These data suggest that adoptive immunotherapy in combination with 5-Aza-dC may be a potential strategy to treat unresectable or metastatic chondrosarcoma patients where no proven systemic therapies exist
    • …
    corecore