9 research outputs found

    Effects of Strength and Power Training on Neuromuscular Variables in Older Adults

    No full text
    The purpose of this study was to compare the neuromuscular adaptations produced by strength-training (ST) and power-training (PT) regimens in older individuals. Participants were balanced by quadriceps cross-sectional area (CSA) and leg-press 1-repetition maximum and randomly assigned to an ST group (n = 14; 63.6 +/- 4.0 yr, 79.7 +/- 17.2 kg, and 163.9 +/- 9.8 cm), a PT group (n = 16; 64.9 +/- 3.9 yr. 63.9 +/- 11.9 kg, and 157.4 +/- 7.7 cm), or a control group (n = 13; 63.0 +/- 4.0 yr, 67.2 +/- 10.8 kg, and 159.8 +/- 6.8 cm). ST and PT were equally effective in increasing (a) maximum dynamic and isometric strength (p < .05), (b) increasing quadriceps muscle CSA (p < .05), and (c) decreasing electrical mechanical delay of the vastus lateralis muscle (p < .05). There were no significant changes in neuromuscular activation after training. The novel finding of the current study is that PT seems to be an attractive alternative to regular ST to maintain and improve muscle mass

    Spinal and supraspinal adaptations associated with balance training and their functional relevance

    No full text
    Traditionally, balance training has been used to rehabilitate ankle injuries and postural deficits. Prospective studies have shown preventive effects with respect to ankle and knee joint injuries. Presently, balance training is not only applied for rehabilitation and prevention but also for improving motor performance, especially muscle power. The recent application of noninvasive electrophysiological and brain imaging techniques revealed insights into the central control of posture and the adaptations induced by balance training. This information is important for our understanding of the basic control and adaptation mechanisms and to conceptualize appropriate training programmes for athletes, elderly people and patients. The present review presents neurophysiological adaptations induced by balance training and their influence on motor behaviour. It emphasizes the plasticity of the sensorimotor system, particularly the spinal and supraspinal structures. The relevance of balance training is highlighted with respect to athletic performance, postural control within elderly people as well as injury prevention and rehabilitation

    Spinal and supraspinal adaptations associated with balance training and their functional relevance

    No full text

    Lasers

    No full text
    corecore