108 research outputs found

    Introduction

    Get PDF

    Curved DNA molecules migrate anomalously slowly in free solution

    Get PDF
    The electrophoretic mobility of a curved DNA restriction fragment taken from the VP1 gene in the SV40 minichromosome has been measured in polyacrylamide gels and free solution, using capillary electrophoresis. The 199 bp restriction fragment has an apparent bend angle of 46 ± 2° located at SV40 sequence position 1922 ± 2 bp [Lu Y.J., Weers B.D. and Stellwagen N. C. (2005) Biophys. J., 88, 1191–1206]. The ‘curvature module’ surrounding the apparent bend center contains five unevenly spaced A- and T-tracts, which are responsible for the observed curvature. The parent 199 bp fragment and sequence mutants containing at least one A-tract in the curvature module migrate anomalously slowly in free solution, as well as in polyacrylamide gels. Hence, the anomalously slow mobilities observed for curved DNA molecules in polyacrylamide gels are due in part to their anomalously slow mobilities in free solution. Analysis of the gel and free solution mobility decrements indicates that each A- or T-tract contributes independently, but not equally, to the curvature of the 199 bp fragment and its A-tract mutants. The relative contribution of each A- or T-tract to the observed curvature depends on its spacing with respect to the first A-tract in the curvature module

    Evolution of the Air Toxics Under the Big Sky Program

    Get PDF
    As a yearlong exploration of air quality and its relation to respiratory health, the “Air Toxics Under the Big Sky” program offers opportunities for students to learn and apply science process skills through self-designed inquiry-based research projects conducted within their communities. The program follows a systematic scope and sequence designed to first lay a strong foundation, followed by activities intended to expand understanding, and ending with a final step aimed at achieving retention of content and principles learned. The foundation consists of content regarding environmental health sciences and human health. The next level guides students during their independent study projects as they test their hypotheses, analyze results, and draw conclusions. The final step requires these junior researchers to share their findings with others in some type of culminating event, with the most prominent being a high school symposium held at the conclusion of the school year. This article describes the evolution of the Air Toxics Under the Big Sky program since its inception in 2003

    The Big Sky Model: A Regional Collaboration for Participatory Research on Environmental Health in the Rural West

    Get PDF
    As an innovative community-based framework for science learning, the Big Sky Model is guiding high school and tribal college students from rural areas of Montana and Idaho in their understanding of chemical, physical, and environmental health concepts in the context of their own homes, schools, and communities. Students participate in classroom lessons and continue with systematic inquiry through actual field research to investigate a pressing, real-world issue: understanding the complex links between poor air quality and respiratory health outcomes. This article provides background information, outlines the procedure for implementing the model, and discusses its effectiveness as demonstrated through various evaluation tools

    Air Toxics Under The Big Sky – A High School Science Teaching Tool

    Get PDF
    A project has been developed between Big Sky High School and The University of Montana (UM) which has brought together high school students and teachers, university scientists, and county environmental health officials in a multilayered research experience focusing on the collection and analysis of specific air toxics, and investigating their relationship to respiratory diseases. The Air Toxics Under the Big Sky project allows students to benefit from an independent experience linking science, research, and local environmental issues. We see this as a long term project which will be built upon and expanded by future students during each new school year and as new schools are added. This project will foster a long-term scientific collaboration between UM and Montana high schools, and establishes high school students as valuable contributors to the scientific community while educating them about environmental issues

    The Power of the Symposium: Impacts from Students\u27 Perspectives

    Get PDF
    The Air Toxics under the Big Sky program developed at the University of Montana is a regional outreach and education initiative that offers a yearlong exploration of air quality and its relation to respiratory health. The program was designed to connect university staff and resources with rural schools enabling students to learn and apply science process skills through self-designed research projects conducted within their communities. As part of the program, students develop and conduct independent projects, then share their findings at the conclusion of the school year in some type of interactive capstone experience, the most prominent being a high school symposium held at The University of Montana campus. Student feedback collected through a carefully controlled evaluation program suggest that the annual symposium as the culminating event is a critical component of the Air Toxics Under the Big Sky program, and a valuable learning experience as many of the students go on to post-secondary education. AcknowledgmentsThe authors wish to thank all the students who have participated in the Air Toxics Under the Big Sky Program, with our special gratitude toward the many dedicated teachers who have made its implementation so successful and rewarding. Funding for this project was provided by the Toyota USA Foundation and by a Science Education Partnership Award, Grant Number R25 RR020432, from the National Center for Research Resources, a component of the National Institutes of Health. The contents of this manuscript are solely the responsibility of the authors and do not necessarily represent the officials views of our funding sponsors

    Air Toxics under the Big Sky: A Real-World Investigation To Engage High School Science Students

    Get PDF
    This paper describes a problem-based chemistry education model in which students perform scientific research on a local environmentally relevant problem. The project is a collaboration among The University of Montana and local high schools centered around Missoula, Montana. Air Toxics under the Big Sky involves high school students in collecting air samples inside and outside their homes within and near Missoula. As part of this program, teachers, students, and university researchers investigate the relationship between air pollutants and their harmful respiratory effects. Students experience scientific research, use scientific equipment, gain an insight into the relationship between the environment and public health, and develop scientific hypotheses. UM benefits by having a pipeline of high school students, several of whom participated in the program while in high school and now attend UM. The local community benefits from the work students and university researchers have done producing high-quality data that are being used in a tracking database for respiratory disease in western Montana. Student research efforts have culminated in three annual symposia that allowed students to present their results at a public forum

    Sterile Protection against Plasmodium knowlesi in Rhesus Monkeys from a Malaria Vaccine: Comparison of Heterologous Prime Boost Strategies

    Get PDF
    Using newer vaccine platforms which have been effective against malaria in rodent models, we tested five immunization regimens against Plasmodium knowlesi in rhesus monkeys. All vaccines included the same four P. knowlesi antigens: the pre-erythrocytic antigens CSP, SSP2, and erythrocytic antigens AMA1, MSP1. We used four vaccine platforms for prime or boost vaccinations: plasmids (DNA), alphavirus replicons (VRP), attenuated adenovirus serotype 5 (Ad), or attenuated poxvirus (Pox). These four platforms combined to produce five different prime/boost vaccine regimens: Pox alone, VRP/Pox, VRP/Ad, Ad/Pox, and DNA/Pox. Five rhesus monkeys were immunized with each regimen, and five Control monkeys received a mock vaccination. The time to complete vaccinations was 420 days. All monkeys were challenged twice with 100 P. knowlesi sporozoites given IV. The first challenge was given 12 days after the last vaccination, and the monkeys receiving the DNA/Pox vaccine were the best protected, with 3/5 monkeys sterilely protected and 1/5 monkeys that self-cured its parasitemia. There was no protection in monkeys that received Pox malaria vaccine alone without previous priming. The second sporozoite challenge was given 4 months after the first. All 4 monkeys that were protected in the first challenge developed malaria in the second challenge. DNA, VRP and Ad5 vaccines all primed monkeys for strong immune responses after the Pox boost. We discuss the high level but short duration of protection in this experiment and the possible benefits of the long interval between prime and boost
    corecore