40 research outputs found

    Gallbladder reporting and data system (GB-RADS) for risk stratification of gallbladder wall thickening on ultrasonography:an international expert consensus

    Get PDF
    The Gallbladder Reporting and Data System (GB-RADS) ultrasound (US) risk stratification is proposed to improve consistency in US interpretations, reporting, and assessment of risk of malignancy in gallbladder wall thickening in non-acute setting. It was developed based on a systematic review of the literature and the consensus of an international multidisciplinary committee comprising expert radiologists, gastroenterologists, gastrointestinal surgeons, surgical oncologists, medical oncologists, and pathologists using modified Delphi method. For risk stratification, the GB-RADS system recommends six categories (GB-RADS 0–5) of gallbladder wall thickening with gradually increasing risk of malignancy. GB-RADS is based on gallbladder wall features on US including symmetry and extent (focal vs. circumferential) of involvement, layered appearance, intramural features (including intramural cysts and echogenic foci), and interface with the liver. GB-RADS represents the first collaborative effort at risk stratifying the gallbladder wall thickening. This concept is in line with the other US-based risk stratification systems which have been shown to increase the accuracy of detection of malignant lesions and improve management. Graphical abstract: [Figure not available: see fulltext.]

    Sgs1 and Exo1 Redundantly Inhibit Break-Induced Replication and De Novo Telomere Addition at Broken Chromosome Ends

    Get PDF
    In budding yeast, an HO endonuclease-inducible double-strand break (DSB) is efficiently repaired by several homologous recombination (HR) pathways. In contrast to gene conversion (GC), where both ends of the DSB can recombine with the same template, break-induced replication (BIR) occurs when only the centromere-proximal end of the DSB can locate homologous sequences. Whereas GC results in a small patch of new DNA synthesis, BIR leads to a nonreciprocal translocation. The requirements for completing BIR are significantly different from those of GC, but both processes require 5′ to 3′ resection of DSB ends to create single-stranded DNA that leads to formation of a Rad51 filament required to initiate HR. Resection proceeds by two pathways dependent on Exo1 or the BLM homolog, Sgs1. We report that Exo1 and Sgs1 each inhibit BIR but have little effect on GC, while overexpression of either protein severely inhibits BIR. In contrast, overexpression of Rad51 markedly increases the efficiency of BIR, again with little effect on GC. In sgs1Δ exo1Δ strains, where there is little 5′ to 3′ resection, the level of BIR is not different from either single mutant; surprisingly, there is a two-fold increase in cell viability after HO induction whereby 40% of all cells survive by formation of a new telomere within a few kb of the site of DNA cleavage. De novo telomere addition is rare in wild-type, sgs1Δ, or exo1Δ cells. In sgs1Δ exo1Δ, repair by GC is severely inhibited, but cell viaiblity remains high because of new telomere formation. These data suggest that the extensive 5′ to 3′ resection that occurs before the initiation of new DNA synthesis in BIR may prevent efficient maintenance of a Rad51 filament near the DSB end. The severe constraint on 5′ to 3′ resection, which also abrogates activation of the Mec1-dependent DNA damage checkpoint, permits an unprecedented level of new telomere addition
    corecore